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Abstract—Nuclear magnetic resonance (NMR) spectroscopy,
whose time domain data is modeled as the sum of damped
exponential signals, has become an indispensable tool in various
scenarios, such as biomedicine, biology, and chemistry. NMR
spectroscopy signals, however, are usually corrupted by Gaussian
noise in practice, raising difficulties in sequential analysis and
quantification. The low-rank Hankel property of exponential
signals plays an important role in the denoising issue, but
selecting an appropriate parameter still remains a problem. In
this work, we explore the effect of the regularization parameter
of a convex optimization denoising method based on low-rank
Hankel matrices for exponential signals corrupted by Gaussian
noise. An accurate estimate on the spectral norm of weighted
Hankel matrices is provided as a guidance to set the regu-
larization parameter. The bound can be efficiently calculated
since it only depends on the standard deviation of the noise
and a constant. Aided by the bound, one can easily obtain
an auto-setting regularization parameter to produce promising
denoised results. Our results on synthetic and realistic NMR
spectroscopy data demonstrate a superior denoising performance
of the proposed approach over typical Cadzow and the state-of-
the-art QR decomposition methods, especially in the low signal-
to-noise ratio regime.

Index Terms—spectral denoising, NMR spectroscopy, Hankel
matrix, signal reconstruction, automatic parameter.

I. INTRODUCTION

NUCLEAR magnetic resonance (NMR) spectroscopy has
grown into an essential tool for biomedical studies [1],

such as the structure determination [2], metabolic analysis
[3], and medical diagnosis [4]. However, NMR spectroscopy
signals are often corrupted by noise during acquisition and/or
transmission. The noise problem turns out to be severe in the
low Signal-to-Noise Ratio (SNR) regime [5], [6]. Therefore,
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there is a strong demand for denoising signals, particularly in
the low SNR regime.

Gaussian noise is commonly encountered in NMR spec-
troscopy denoising applications [7]–[10]. One of the most
effective and widely adopted approaches to suppress Gaussian
noise is to average multiple signal acquisitions. However, the
multiple acquisitions are not always available or too costly in
real applications. For this reason, effective denoising of the
signals with a limited number of scans is favorable.

Numerous efforts have been made to denoise NMR spec-
troscopy signals. Among them, exploiting the exponential
characteristic of NMR spectroscopy signals has been grown
into a powerful tool [11]–[18]. Such low-rank properties
were also utilized in NMR spectroscopy reconstruction [9],
[14], [19]–[21], NMR spectroscopic imaging [22]–[24], and
magnetic resonance imaging [25] [26], [27]. The Cadzow
enhancement approach is popular in spectra denoising with
the exploitation of the low-rank property of exponentials [11]–
[13]. Compared with some typical denoising methods, such
as the smoothing approach [28], wavelet thresholding [29],
[30], Maximum entropy [31], and covariance matrix [32], [33],
Cadzow method is more theoretically adopted to the denoising
of all NMR spectroscopy signals. However, it is a challenging
task to choose a proper number R of exponential components
in practical applications, unless a priori information is given.
Efforts have been made to estimate R, such as the indicator
function [34] and the significance level function [35], but
the estimation of R may not be satisfactory enough to yield
good results [36]. Another denoising method called random
QR denoising method (rQRd) is based on an approximate
low-rank decomposition, and accelerates the computation by
avoiding the Singular Value Decomposition (SVD) in the
Cadzow method [7]. It is, however, also based on an estimation
of the rank R.

This low-rank Hankel property also can be exploited in
an unconstrained convex optimization method for the recon-
struction issue [14], [37]. The method, known as Low-Rank
Hankel Matrix reconstruction method (LRHM), also can be
used for denoising, and one may receive a good result. The
regularization parameter λ plays an important role in the
results. As an example, Fig. 1 shows the denoised results
with different λ. If λ is too large, the majority of the noise
remains since the effect of the nuclear norm minimization is
ignorable; if λ is too small, the spectral peaks are seriously
distorted. Unfortunately, the choice of λ is still based on users’
experience. Exploring the effect and the proper choice of λ is
still of great demand and challenging.
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Fig. 1. A denoising example of LRHM with different choices of λ. (a) The
noiseless spectrum. (b) The noisy spectrum with Gaussian noise (σ = 0.02).
(c)-(e) The denoised results with λ = 3000, 7.5, and 150, respectively. Note:
Without explicit illustration, λ is in the data consistency term in this paper.
The model of LRHM is written as minx∈C2N+1 ‖Rx‖∗ +

λ
2
‖y − x‖22.

In this paper, we explore the effect of the regularization
parameter, and show that a good λ can be automatically
chosen according to the spectral norm of a weighted Hankel
matrix, which is estimated by random matrix theory as a
guideline for the selection of a proper λ. One only needs
to estimate the standard deviation of the noise, which also
can be set automatically, to calculate this proper λ. Numerical
experiments on both synthetic and real NMR spectroscopy data
show that noise can be effectively removed when the parameter
is chosen according to our analysis.

The rest of the paper is organized as follows. Section II
briefly reviews the signal model of NMR spectroscopy signals
and LRHM in the denoising issue. Section III is devoted to
analyzing the selection of λ and estimating the spectral norm
of weighted Hankel matrices. Section IV contains numerical
results on synthetic and real NMR spectroscopy data. Section
V discusses the robustness to the estimate on the noise
standard deviation, the effect of phase, the comparison with
other methods, and the Denoising on 13C Solid-state NMR
spectroscopy. Finally, we conclude and discuss future works
in Section VI.

Notations used in the paper are introduced below. We denote
vectors through bold lowercase letters and matrices through
bold uppercase letters. The entry in vectors and matrices is
denoted by a normal letter with a subscript which stands for
its location. For example, xn denotes the nth element of x, and
Xm,n denotes the (m,n)th entry of X. For any vector x, ‖x‖2
represents the l2 norm. For any matrix X, ‖X‖∗ and ‖X‖2

denote the nuclear norm and the spectral norm, respectively.
The Hadamard product is denoted by ◦. We use superscript
T and H to denote the transpose and the conjugate transpose
of x and X. Most of operators are denoted by calligraphic
letters.

II. CONNECTION TO PRIOR WORK

In the time domain, NMR spectroscopy signal, referred to
as Free Induction Decay (FID), can be expressed as the sum
of R exponentials:

x0(tn) =

R∑
r=1

are
(j2πfr−τr)tn , n = 0, . . . , 2N (1)

where ar denotes the signal amplitude, fr is the central
frequency, and τr is the decay factor. When the number of
peaks is small enough, usually R ≤ 0.1 (N + 1), the Hankel
matrix can be treated as “low-rank” [14], [18]. In this work,
we focus on the denoising of NMR spectroscopy with this
property.

In practice, observations are often contaminated by
noise and one receives y = x0 + z, where x0 =[
x0 (t0) x0 (t1) · · · x0 (t2N )

]T
is a noiseless signal

and z ∈ C2N+1 is a random vector whose real and imaginary
parts are i.i.d Gaussian with mean 0 and variance σ2.

Exponential signals can be transformed into Hankel matri-
ces with a Vandermonde decomposition. Given x0, one forms
the square Hankel matrix

Rx0 =


x0 (t0) x0 (t1) · · · x0 (tN )
x0 (t1) x0 (t2) · · · x0 (tN+1)

...
...

...
...

x0 (tN ) x0 (tN+1) · · · x0 (t2N )

 ,
where R : C2N+1 → C(N+1)×(N+1) is the operator trans-
forming a vector to the square Hankel matrix. It is well known
that Rank(Rx0) ≤ R [38], [39].

The denoising method we explore is based on the low-
rank property of Rx0 [14], and called Convex Hankel lOw-
Rank matrix approximation for Denoising exponential signals
(CHORD), where one solves the following optimization prob-
lem:

x̂ = arg min
x∈C2N+1

‖Rx‖∗ +
λ

2
‖y − x‖22 , (2)

where λ denotes the regularization parameter, x̂ denotes the
minimizer. The nuclear norm ‖·‖∗ is a surrogate for the rank
[40].

Alternating Direction Method of Multipliers (ADMM) [41]
is a typical iterative algorithm, which can be used to solve (2).
All details have been presented in the supplementary material
(Section I).

The optimization problem in (2) involves a single regular-
ization parameter λ, and the denoised result crucially depends
on the choice of λ. Therefore, setting an appropriate λ is a
crucial issue in this denoising method. This paper provides an
automatic estimate on the proper choice of λ, and validations
by experimental results.
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III. AN AUTOMATIC ESTIMATE OF THE REGULARIZATION
PARAMETER λ

This section provides an estimate of the proper λ through
establishing a relation between λ and the spectral norm of
weighted Hankel matrices.

As x̂ is the minimizer of (2), according to the subgradient
of the nuclear norm [40], [42]–[44], the subgradient of (2) is
derived as

λ (y − x̂) = R∗
(
ÛV̂H + Ŵ

)
, (3)

where matrices Û, V̂∈C(N+1)×(N+1) are from the SVD of
Rx̂ such thatRx̂ = ÛΣ̂V̂H , and Ŵ∈C(N+1)×(N+1) satisfies
ÛHŴ = 0, ŴV̂ = 0, and

∥∥∥Ŵ∥∥∥
2
≤ 1. x̂ should satisfies

(3) for a matrix Ŵ that has the aforementioned properties.
R∗ : C(N+1)×(N+1) → C2N+1 is an operator transforming a
matrix into vector via summing each anti-diagonal.

Denote the vector w is the weights defined as w =[
1 2 · · · N + 1 · · · 2 1

]T ∈ R2N+1 and the
symbol ◦ stands for Hadamard product.

Since λ comes from the sub-gradient of (2), the optimal
λ definitely satisfies (3). To obtain a specific λ value, it is
necessary to know Û, V̂, and Ŵ. However, according to the
definition of the sub-gradient of the nuclear norm, the matrix
Ŵ cannot be obtained directly, we have to use the inequality
scaling and numerical experiments to obtain a proper λ.

Because λR 1
w ◦ (x0 + z− x̂) is an approximation of

ÛV̂H + Ŵ,
∥∥λR 1

w ◦ (x0 + z− x̂)
∥∥
F
≤
∥∥∥ÛV̂H + Ŵ

∥∥∥
F

[11]. This relatioinship approximately holds in the spectral
norm (See the details in the Supplement Section II). Therefore,
the proper λ is chosen as below

λ ≤ 1∥∥∥Z + X̃
∥∥∥
2

≤ 1(∣∣∣‖Z‖2 − ∥∥∥X̃∥∥∥
2

∣∣∣) , (4)

where Z =
(
R 1

w

)
◦ Rz denotes a weighted Hankel matrix

such that

Z =

(
R 1

w

)
◦Rz =


z1

z2
2 · · · zN+1

N+1
z2
2

z3
3 · · · zN+2

N
...

... · · ·
...

zN+1

N+1
zN+2

N · · · z2N+1

 , (5)

and X̃ denotes X̃ =
(
R 1

w

)
◦ R (x0 − x̂).

In order to explore the relationship among the spectral
norm of weighted Hankel matrices, the noise level, and the
size of the matrix, we did sufficient Monte Carlo trials on
synthetic data and Gaussian noise. Results in Fig. 2 and Fig.
3 show that the empirical means of ‖Z‖2 and

∥∥∥X̃∥∥∥
2

are
almost independent of N . Furthermore, these empirical means
increase as the increasing of the standard deviation σ of the
noise.

In applications, it is expected that signal details can be
preserved as much as possible, thus we propose to select the
regularization parameter as
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Fig. 2. The relation between ‖Z‖2 and the standard deviation σ of the
Gaussian noise z in 100 Monte Carlo trials. The Matrix Z is of size (N +
1)×(N + 1) with (N + 1) = 64, 128, 256, 512, respectively. The curve
represents the mean of ‖Z‖2 in 100 trails versus σ, and the standard deviation
of ‖Z‖2 in 100 trails is indicated by the vertical bar.
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Fig. 3. The relation between
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2
and the standard deviation σ of the

Gaussian noise z in 50 Monte Carlo trials. The Matrix X̃ is of size (N +
1)×(N + 1) with (N + 1) = 64, 128, 256, 512, respectively. The curve
represents the mean of

∥∥∥X̃∥∥∥
2

in 50 trails versus σ, and the standard deviation

of
∥∥∥X̃∥∥∥

2
in 50 trails is indicated by the vertical bar. Note: x0 are damped

exponential signals with random ar , fr and τr . x̂ is obtained from CHORD.
The parameter λ is chosen such that the Normalized Root-Mean-Square Error
(NRMSE) is minimized.

λ∗ =
1∣∣∣E ‖Z‖2 − E
∥∥∥X̃∥∥∥

2

∣∣∣ , (6)

where the symbol E denotes the expectation.
In order to provide a proper choice of λ, we estimate an

upper and lower bound of E ‖Z‖2. With respect to E
∥∥∥X̃∥∥∥

2
,

we provide an empirical value based on sufficient numerical
experiments on synthetic data.

A. The bounds of E‖Z‖2
Actually, for estimating bounds of the spectral norm of

Hankel matrices given by random vectors, numerical achieve-
ments have been made [45]–[48]. In this subsection, we
focus on estimating bounds of the spectral norm of weighted
Hankel matrices. Theorem 1 and 2 provide a lower and upper
bounds of E ‖Z‖2, respectively. All details of proofs and the
asymptotic analysis have been presented in the supplementary
material (Sections III-V).
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Theorem 1. Suppose the real and imaginary parts of the
entries in z∈C2N+1 are i.i.d. Gaussian random variables with
mean 0 and variance σ2. Define RN and QN such that

R2
N =

2N∑
k=0

|dk|2 and Q4
N =

2N∑
k=0

|dk|4 , (7)

where dk =

{
2

(k+1)(k+2)

∑k
m=0

1
m+1 , 0 ≤ k ≤ N

2
(2N−k+1)(k+2)

∑2N
m=k

1
m−N+1 , N < k ≤ 2N

.

Then there exists a constant C such that the matrix Z defined
in (4) satisfies

E‖Z‖2 ≥ σ
C(N + 1)

2N + 1

√
R2
N

(
1 + log

R4
N

Q4
N

)
. (8)

Theorem 2. Suppose the real and imaginary parts of the
entries in z∈C2N+1 are i.i.d. Gaussian random variables with
mean 0 and variance σ2. Then

E ‖Z‖2≤σ
√
2Cw log (2N + 2), (9)

where Cw = max(
∑N
k=0 w

−2
k ,
∑N+1
k=1 w

−2
k , . . . ,

∑2N
k=N w

−2
k )

with the vector w defined in (5).

Two theorems above provide the following upper and lower
bounds of E ‖Z‖2:

σ
C(N + 1)

2N + 1

√√√√R2
N

(
1 + log

R4
N

Q4
N

)
≤E ‖Z‖2≤σ

√
2Cw log (2N + 2).

(10)

The upper bound scales as σ
√
logN , while the lower bound

depends on RN and QN . When N is large enough, the upper
bound and the lower bound only differ by a factor of

√
logN .

Choosing the lower bound of E ‖Z‖2 tends to obtain a
relatively large λ, which is beneficial to preserve more signal
details. Therefore, we suggest to choose E ‖Z‖2 as

E ‖Z‖2 =
C(N + 1)

(2N + 1)

√
R2
N

(
1 + log

R4
N

Q4
N

)
σ. (11)

We next find the empirical constant C through repetitive
experiments on synthetic data. According to Theorem 1, C >
0 is a constant, which is independent of the signal length and
the standard deviation σ.

The slope values of lines in Fig. 2 are estimated
by the least square method. According to the conclu-
sion in (9), C values are obtained via dividing slopes by
(N+1)
(2N+1)

√
R2
N

(
1 + log

R4
N

Q4
N

)
. Finally, after averaging four C

values, we suggest that C = 2.9 for denoising. Results in Fig.
4 confirms that the conclusion in Theorem 1 is well capable
of estimating E ‖Z‖2.

B. The empirical E
∥∥∥X̃∥∥∥

2

This subsection is devoted to an empirical estimate of
E
∥∥∥X̃∥∥∥

2
. We perform experiments with different N , σ, λ,
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Fig. 4. E ‖Z‖2 and the lower bound with the suggested C under different
matrix sizes. The Matrix Z is of size (N+1)×(N+1) with (N+1) = 64(a),
128(b), 256(c), and 512(d), respectively. The vertical axis denotes the value
of ‖Z‖2 and the horizontal axis denotes the standard deviation of Gaussian
noise. The black curves stand for the empirical mean of ‖Z‖2 in Fig. 2.
Red lines denote the lower bounds with C = 2.9. The error bars denote the
standard deviation of ‖Z‖2 values in 100 Monte Carlo trials.

signals and noises in order to determine a proper empirical
estimate value.

Before evaluating the denoising performance, we first in-
troduce two objective criteria, Normalized Root-Mean-Square
Error (NRMSE) [49] and Mean Absolute Error (MAE) [50].

NRMSE =
‖x̂− x0‖2
‖x0‖2

, (12)

where x̂ and x0 are the denoised signal and the noiseless signal
respectively.

MAE =
‖fs − f0‖1
2N + 1

, (13)

where fs∈R(2N+1)×1 and f0∈R(2N+1)×1 denote the real part
of the noisy spectrum and the noiseless spectrum, respectively.

We generate a synthetic data set, including 90 random
damping complex exponential signals with 2N + 1 = 255,
511, and 1023 respectively, and repeat 100 Monte Carlo trials
to incorporate the randomness of Gaussian noise. Each signal
in the data set has 3R+1 parameters, including R, ar, fr and
τr, where r = 1, 2, · · · , R. The number of exponential com-
ponents is R = 4+Mr, where Mr denotes a pseudo-random
scalar integer of range [1, 9]. The amplitude ar is uniformly
sampled from (0, 10). Each frequency fr is uniformly sampled
from (0, 1). The damping factor is τr = 5+60mr, where mr

is uniformly sampled from (0, 1).
Then, we use a series of λ to denoise signals in the data set

above, find the optimal solution x̂ corresponded to the lowest
error, NRMSE, and calculate

∥∥∥X̃∥∥∥
2
. 9 signals with different

data lengths are randomly selected and the corresponding∥∥∥X̃∥∥∥
2

are presented in Fig. 5.
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Fig. 5. The relation between
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given by random synthetic signals and noise levels. (a)-(c) show the average spectral norm of X̃ which is of size

(N + 1) × (N + 1) with (N + 1) = 128(a), 256(b), 512(c), respectively. The vertical error bars represent the standard deviation of
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2
values in 100

Monte Carlo trials. Note: For each sub-plot, the green, blue, and red lines denote
∥∥∥X̃∥∥∥

2
given by different random signals.

Results in Fig. 5 indicate that the standard deviation of noise
is the main factor that determines E

∥∥∥X̃∥∥∥
2
. Moreover, this

empirical mean of
∥∥∥X̃∥∥∥

2
seems to be linear to the standard

deviation of the noise. Additionally, the spectral parameters
and the distribution they satisfy also slightly affects E

∥∥∥X̃∥∥∥
2

(See the details in the supplementary material Section IX). We
estimate the slope on Matlab platform (2017b) and suggest
E
∥∥∥X̃∥∥∥

2
= 1.94σ for denoising.

IV. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of CHORD
with the suggested λ on the synthetic data and a realistic
NMR spectroscopy data set. No preprocessing, including the
phase correction and apodisation, was applied to the synthetic
data. For the data acquired from real NMR spectrometer, we
merely truncated the FID signal and only used the first 1000
points. For visualization, real-part spectra are presented and
imaginary-part spectra are discarded, but all the processing
are on complex data. In addition, for avoiding the bias, the
proposed method also have been tested on random simulated
data, whose detailed results are presented in the supplementary
material (Section X).

The typical method, Cadzow [7], [13], and the state-of-the-
art method, rQRd [7] are compared with our proposed method.
For Cadzow, its key parameter is the rank of this Hankel
matrix. For rQRd, its primary parameter is the number of the
matrix Q’s column, denoted as rankQ, in QR decomposition.
For the rest of the manuscript, without explicit illustration, the
main parameters in Cadzow and rQRd are chosen to be the
ones yielding the lowest reconstruction error, NRMSE.

A. Denoising of synthetic complex data

We generated a synthetic exponential complex data with five
peaks (presented in Fig. 1(a)). In the following, the synthetic
data indicates the signal in Fig. 1(a). The denoising perfor-
mance of three methods is tested through recovering the signal
from complex Gaussian noise with different standard deviation
(σ = 0.01, 0.02, 0.03, 0.04, 0.05, and 0.06, respectively). 100
Monte Carlo trials are done to avoid the randomness of noise.

In practice, we do not know in advance the standard
deviation of the noise that corrupts the signal of interest. Here,
we truncate signal from the end of noisy FID to estimate
the standard deviation of the noise to mimic the real cases.
The truncated length is verified by Kolmogorov-Smirnov (KS)
test [51]. Also, we compare the denoising performances of
CHORD given the known standard deviation and the estimated
standard deviation. For clarity, we name the CHORD using the
known standard deviation CHORDPrior and the CHORD using
estimated standard deviation CHORDEsti, respectively.

N
R
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S

E
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0.6

Noise level

0.01 0.02 0.03 0.04 0.05 0.06
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rQRd

CHORDEsti

CHORDPrior

Fig. 6. The reconstruction error, NRMSE, for synthetic data (Fig. 1(a))
under different noise levels. CHORDEsti and CHORDPrior denote denoised
results of CHORD with estimated standard deviation and the known standard
deviation, respectively. Cadzow and rQRd present the optimal (minimal
NRMSE) denoised results, respectively. The height of columns shows the
average of the NRMSEs over 100 trials. The vertical bar comes from the
randomness of noise.

Fig. 6 shows the denoising performance under different
noise levels. Under relatively weak noise (σ ≤ 0.02), Cadzow
achieves the lowest NRMSE compared to other approaches.
Under relatively high noise (σ ≥ 0.05), however, the NRMSE
of Cadzow increase faster than that of rQRd and, particu-
larly, CHORD, implying Cadzow is not robust to relatively
high noise levels. The proposed method produces the lowest
NRMSE when the noise is higher than 0.03 and produces
smallest variances. Furthermore, the results of CHORDEsti are
very close to that of CHORDPrior, showing the feasibility of
CHORD. In the following, without explicit illustration, the
mentioned CHORD is CHORDEsti.

We evaluate the effect of parameters selection of the tested
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approaches in Fig. 7. For Cadzow, when the noise is weak
(Fig. 7(a)), an accurate estimate leads to a good result. But as
the noise gets stronger, the optimal estimated rank (in terms
of NRMSE) may be not equivalent to the actual rank (Fig.
7(c)), meaning that if the noise level is strong enough, an
accurate estimated rank will not significantly improve denoised
results. Compared with Cadzow, rQRd owns a more flexible
parameter setting, but the average NRMSE of its denoised
results is always higher than that of CHORD under large noise.

Fig. 8 presents the representative denoised results of the
synthetic signal corrupted by strong noise. Typical denoised
spectra of Cadzow and rQRd with three different parameters
selection are presented. Cadzow tends to remove small peaks if
using a much smaller estimated rank (see Fig.8(i)). And if the
estimated rank is close to or larger than the real rank, Cadzow
spectra introduce spectral distortions and distinct artifacts (see
Fig.8(e) and (m)). For rQRd, a small rankQ leads to a smooth
spectrum but with missed or weakened low-intensity peaks
(see Fig.8(k)), while larger parameters introduce strong noise
(see Fig.8g) and (o)). For the CHORD, it provides a relatively
reasonable denoised result using the suggested λ and the
estimated noise level.

B. Denoising of NMR spectroscopy data

NMR spectroscopy, as a non-invasive technology, has
been widely utilized in the study of chemistry, biology, and
medicine, such as the diagnosis of diseases [22]. One of the
reasons that limits the widespread of this technology is its
relatively low SNR. Therefore, CHORD is evaluated on the
denoising of a real NMR spectroscopy data. We acquired the
signal with high SNR as the reference and added the Gaussian
noise retrospectively.

In applications, the unit of chemical shift is usually ex-
pressed in part per million (ppm) instead of the Hz, avoiding
the ambiguity when spectrometers are at different magnet
strengths. The definition of chemical shift is given by

chemical shift(ppm) =
ftest − fref

fspec
× 106, (14)

where ftest denotes the resonance frequency of the sample,
fref the absolute resonance frequency of a standard compound
measured in the same magnetic field, and fspec the frequency
of the magnetic field strength of spectrometers.

The real data is a 1D 1H NMR spectrum that was acquired at
298 K on a Varian 500 MHz (11.7T) magnetic resonance sys-

tem (Agilent Technologies, Santa Clara, CA, USA) equipped
with a 5 mm indirect detection probe. A 8.3µs single pulse
sequence was used, and 64 scans were acquired. The total
acquisition time took 286.7s. The concentration of creatine,
choline, magnesium citrate and calcium citrate are 0.03g/mL,
0.03g/mL, 0.06g/mL, and 0.06g/mL, respectively.

The denoised results of the metabolic spectrum are pre-
sented in Fig. 9, which supports the conclusion made on the
synthetic data. Under a relatively strong noise level (σ =
0.035), Cadzow smooths the spectrum, which, on the one
side, offers a nice noise denoised results, on the other side,
however, leads to the missing of some peaks (such as the
peaks at 6.8 ppm). rQRd provides a spectrum with obvious
noise (orange lines in Fig. 9(c)), and weakens low-intensity
peaks (such as the peaks at 6.8 ppm). CHORD is capable
of effectively removing noise and keeping more details of
peaks (see Fig. 9(c)). For the high SNR scenario, all the three
methods produce nice and comparable denoised results (see
Fig. 9(a)).

Experiments on synthetic complex exponential and realistic
NMR spectroscopy data demonstrate that CHORD with the
auto-setting parameter achieves more robust and accurate
results compared with Cadzow and rQRd method.

V. DISCUSSIONS

A. The estimate of noise
We estimate the noise level by calculating the standard

deviation of signals truncated from the end of signals on
Matlab platform (2017b). To ensure that the truncated signals
satisfy the Gaussian distribution, KS test is introduced into the
noise estimate. Details of p value test and the flowchart have
been shown in the Supplement (Section VI).

The p values of different truncated lengths under various
noise levels are tested on the simulated data (Fig. 10). 100
Monte Carlo trials have been done to avoid the randomness
of noise.

The results in Fig. 10 illustrate that the reduction of p values
is caused by the truncation of FID. In the areas without noise,
such as the last 200 points in Fig. 10(a), the average of p values
approximates 0.8. As the truncated length increases, a part of
the signal is treated as noise, resulting in the apparent descent
of p values. Additionally, a low noise level is beneficial to
distinguish the noise and the ground truth, which is reflected
in the earlier decrease of p values. Furthermore, p values
fluctuate at 0.8 for truncated signals without FID. Therefore,
we selected 0.8 as the threshold value.

B. The effect of phase on E
∥∥∥X̃∥∥∥

2

Since the effect of phase can be alleviated by the correction
in the preprocessing, in the above, we temporarily omitted the
phase during the estimate of E

∥∥∥X̃∥∥∥
2

to simplify the problem.
This subsection is devoted to discuss the empirical value of
E
∥∥∥X̃∥∥∥

2
under two common situations where the signal x0

contains the zero-order and relative phase.
Both the zero-order phase θ and the relative phase θr are

uniformly random and sampled from (0, 1). These phases are
added for the experiments as:
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(Zero-order phase)

x0(tn) = ej2πθ
R∑
r=1

are
(j2πfr−τr)tn , n = 0, · · · , 2N,

(15)

and

(Relative phase)

x0(tn) =

R∑
r=1

are
j2πθre(j2πfr−τr)tn , n = 0, · · · , 2N.

(16)

According to results of the Monte Carlo simulations (Fig.
11 and Fig. 13), it is observed that E

∥∥∥X̃∥∥∥
2

tends to be
proportional to the noise level. Utilizing the same technique in
Section III-B, the empirical relation between E

∥∥∥X̃∥∥∥
2

and the
standard deviation of the noise can be acquired. Compared
with the suggested value, the zero-order and relative phase
slightly reduce E

∥∥∥X̃∥∥∥
2
. But this change causes little impact

on the denoised spectra (Fig. 12 and 14).
The slopes of lines corresponding to all synthetic data

with the zero-order phase were estimated by the least square
method, and the averaged slope is 1.84. Compared with the
suggested value (1.94), the relative error is 5%. For synthetic
data with the relative phase, the same technique is utilized to

estimate the slope, and the average slope is 1.87. Compared
with the suggested value, the relative error is 4%. In the
supplementary material (Section VII), signals with 256 and
1024 data points are shown to complement the discussion.

C. Comparison with other representative methods

This subsection respectively provides the comparison be-
tween the proposed method and two representative methods, a
sparse regularization-based method, Compressed Sensing (CS)
[52], and adaptive regularization parameters selection method
with Discrepancy Principle (DP) [53]. We verify these methods
on the denoising of the synthetic and the experimental NMR
spectra. The synthetic denoised spectra and NRMSE are shown
in the supplementary material (Section VIII).

1) Comparison with CS: The CS assumes the sparsity of
NMR spectroscopy in the frequency domain. For the denoised
spectra, CHORD better removes noise and retains peak details
(such as the peak at 6.8 ppm in Fig. 15) than CS.

2) Comparison with DP-based method: The Discrepancy
Principle (DP) tries to find an optimal regularization parameter
so that the norm of denoising error is equal to that of the noise
[53]. DP has been used in Tikhonov regularization [53], Total
Variation (TV) [54], and Low-Rank reconstruction [55].

We implemented a DP-based method (See Fig. 16) to select
a λ∗ to satisfy
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‖x̂ (λ∗)− y‖2 = Cσ, (17)

where σ stands for the standard deviation of real/imaginary
part of noise. C is a constant.

Spectra in Figs. 17 show that both the proposed method
and DP can remove the noise well while the former obtains
slightly lower NRMSE than the latter (See the supplementary
material). However, the convergence of DP has not been
proven in LRHM, which is worthy of further investigation
in the future.

D. The denoising on 13C Solid-state NMR spectroscopy

To evaluate the denoising performance under a more re-
alistic scenario, we tested the performance of the proposed
method (Fig. 18) on experimental 13C solid-state NMR spectra
which were acquired with varying levels of average. Solid-
state NMR spectroscopy has grown into a versatile tool to

analyze materials in the solid state but is limited by relatively
low SNR due to its poor sensitivity [36].

The experimental 13C solid-state NMR data is a decoupled
static CSA spectrum with the sample of glycine and was
acquired on a Bruker 600MHz spectrometer (14.1T) equipped
with an AVANCE-III console. A commercial Bruker HX
double-resonance MAS probe with a 4 mm outer diameter
rotor was used in the static for the experiments.

Compared with the reference spectrum (average of 200
scans), CHORD with the automatic parameter effectively
remove noise and preserve the details of the spectrum (Red
lines in Fig. 18(c) and (d)), saving more than 80% acquisition
time. For Cadzow, its optimal denoised result (in terms of
NRMSE) over-smooths the spectrum and generates some fake
peaks (black arrows in Fig. 18(e)). Reducing the estimate of
the rank suppresses the fake peak, but causes a more serious
loss of signal details. A large rank keeps more details but leads
to more fake peaks. For rQRd, its optimal result remains too
much residue, a smaller estimate of rank results in a smoother
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spectrum with the loss of signal details.

VI. CONCLUSION

Based on CHORD, a denoising method based on low-
rank Hankel property of complex exponential signals, we
attempt to figure out the bound of the regularization parameter,
determine the empirical optimal constant, and estimate the
standard derivation of the noise so that the users are able to
apply CHORD with an auto-setting parameter. Experiments on
synthetic complex exponential and realistic NMR spectroscopy
data demonstrate that CHORD with the auto-setting parameter
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achieves more robust and accurate results compared with
Cadzow and rQRd method.

In this paper, we did not discuss the effect of x0 at great
length and had not provided a theoretical estimate of E

∥∥∥X̃∥∥∥
2
.

For the future work, it is worthwhile to explore an accurate
estimate of E

∥∥∥X̃∥∥∥
2
. Moreover, we are also interested in

exploring the probability distribution of the spectral norm, and
extending the 1-D model in (2) to higher dimensional signals
since their acquisition costs relatively more time in applica-
tions. In addition, non-exponential signals, such as Gaussian
signals, are very common in applications [36]. Denoising
Gaussian signals would be very different. How to denoise this
type of signals is important and worthy to explore it in the
future.
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I. THE SOLVER OF CHORD

The model of CHORD is expressed as bellow

x̂ = arg min
x∈C2N+1

‖Rx‖∗ +
λ

2
‖y − x‖22 . (S1)

Alternating Direction Method of Multipliers (ADMM) [1]
is a typical iterative algorithm, which can be used to solve
(S1). After introducing two variables B,D ∈ C(N+1)×(N+1),
we can reformulate (S1) as follows:

max
D

min
x,B
‖B‖∗+

β

2
‖Rx−B‖2F+〈Rx−B,D〉+λ

2
‖y − x‖22 .

(S2)
(S2) is solved with the following iterative scheme:

xk+1 = (βR∗R+ λ1)
−1

[βR∗ (Bk −Dk/β) + λz + λx0]

Bk+1 = S1/β (Rxk+1 + Dk/β)

Dk+1 = Dk + τ (Rxk+1 −Bk+1)

,

(S3)
where 1 ∈ R(N+1)×1 denotes a vector whose elements are
1. The subscript k denotes results in the kth iteration, R∗ :
C(N+1)×(N+1) → C2N+1 is the adjoint operator of R, which
transforms a Hankel matrix into a vector through summing
each anti-diagonal.

Let X ∈ C(N+1)×(N+1) be with the SVD X =
UΣVH , where Σ = diag({σr}Rr=1). The singular thresh-
olding operator which applies in matrix X is S1/β (X) =
Udiag

(
{σr − 1/β}+

)
VH , where t+ = max (0, t) [2]. In

ADMM, β and τ are two parameters and we set β = 1 and
τ = 1.

II. THE DETAILED DERIVATION FROM (3) TO (4)

Since (3) in the main text is derived from the sub-gradient
of the model, the optimal λ definitely satisfies (3). To obtain
a specific λ value, it is necessary to know Û, V̂, and Ŵ.
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However, according to the definition of the sub-gradient of the
nuclear norm, the matrix Ŵ cannot be obtained directly, so we
have to use the inequality scaling and numerical experiments
to obtain a proper λ.

A. The proof of
∥∥∥ÛV̂H + Ŵ

∥∥∥
2
= 1

We rewrite (3) as

λ (x0 + z− x̂) = R∗
(
ÛV̂H + Ŵ

)
. (S4)

Since Û and V̂ unitary matrices, according to the definition
of sub-gradient of the nuclear norm,

∥∥∥ÛV̂H + Ŵ
∥∥∥
2
=
∥∥∥ÛV̂HV̂ + ŴV̂

∥∥∥
2
=
∥∥∥Û∥∥∥

2
= 1. (S5)

B. The relationship between λ
∥∥R [ 1

w ◦ (x0 + z− x̂)
]∥∥

2
and∥∥∥ÛV̂H + Ŵ

∥∥∥
2

In this subsection, we analyze λ
∥∥R [ 1

w ◦ (x0 + z− x̂)
]∥∥

2

under two situations where ÛV̂H + Ŵ is a Hankel matrix
and ÛV̂H + Ŵ is not a Hankel matrix.

When ÛV̂H + Ŵ is a Hankel matrix,

λR
[
1

w
◦ (x0 + z− x̂)

]
= ÛV̂H + Ŵ, (S6)

where w denotes a weight defined as w =[
1 2 · · · N + 1 · · · 2 1

]T ∈ R2N+1.
Thus,

λ

∥∥∥∥R [ 1w ◦ (x0 + z− x̂)

]∥∥∥∥
2

= 1. (S7)

When ÛV̂H + Ŵ is not a Hankel matrix,
λR

[
1
w ◦ (x0 + z− x̂)

]
is a Hankel approximation of

ÛV̂H + Ŵ satisfies that [3]

λ

∥∥∥∥R [ 1w ◦ (x0 + z− x̂)

]∥∥∥∥
F

<
∥∥∥ÛV̂H + Ŵ

∥∥∥
F
. (S8)

Here we do numerical experiments on complex random ma-
trices to illustrate that the relationship in (S8) approximately
holds in the spectral norm.

In the experiments, we tested two types of random matrices:
the real and imaginary part of entries in X satisfy 1) the
standard normal distribution and 2) the uniform distribution.
The matrix X is of size M×M with M = 10, 20, 30, · · · ,
and 1000, respectively, and we repeated 100 Monte Carlo
trials to incorporate the randomness of matrices. The results
of ‖X‖2 −

∥∥R ( 1
w◦R

∗X
)∥∥

2
were recorded and presented.
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Fig. S1. Empirical test of ‖X‖2 −
∥∥R ( 1

w
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. The real and
imaginary part of entries in X satisfy the standard normal distribution
(a) and the uniform distribution (b). The red lines denote the average of
‖X‖2 −

∥∥R ( 1
w
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)∥∥
2

in 100 trails. The pink areas stand for the
distribution. The red dash lines are the maximum and minimum values of
‖X‖2 −

∥∥R ( 1
w
◦R∗X

)∥∥
2

in Monte Carlo trials, respectively.

Results in Fig. S1 show that the relationship in (S8) approx-
imately holds in the spectral norm. Therefore,

λ

∥∥∥∥R [ 1w ◦ (x0 + z− x̂)

]∥∥∥∥
2

<
∥∥∥ÛV̂H + Ŵ

∥∥∥
2
= 1. (S9)

III. THE PROOF OF THEOREM 1

The proof of Theorem 1 are based on the following lemmas:

Lemma 1. Suppose the real and imaginary parts of the entries
in z∈C2N+1 are i.i.d. Gaussian random variables with mean
0 and variance σ2. Define {dk}2Nk=0 as Theorem 1, and then

‖Z‖2 ≥
(N + 1)σ

2N + 1
sup

0≤ω≤1

∣∣∣∣∣
2N∑
k=0

dkpke
i2πkω

∣∣∣∣∣ , (S10)

where pk ∼ N (0, 1), k = 0, 1, 2, · · · , 2N .

Proof. For any vectors a,b ∈ CN+1,

|〈b,Za〉| =
∣∣bHZa

∣∣ ≤ ‖b‖2 ‖a‖2 ‖Z‖2 .
We use the technique in [4] to derive the lower bound of
E‖Z‖2 by choosing proper vectors a and b. Let ak1 =

1
k1+1e

i2πk1ω and bk2 = 1
k2+1e

−i2πk2ω , where ω ∈ [0, 1] and
k1, k2 = 0, . . . , N . Then

‖Z‖2 ≥
1

CN
sup

0≤ω≤1

∣∣∣∣∣∣
N∑

k1=0

N∑
k2=0

1

k1 + 1

1

k2 + 1

ei2πk1ωei2πk2ωzk1+k2
wk1+k2

∣∣∣∣∣
=

1

CN
sup

0≤ω≤1

∣∣∣∣∣
2N∑
k=0

dkzke
i2πkω

∣∣∣∣∣
=

σ

CN
sup

0≤ω≤1

∣∣∣∣∣
2N∑
k=0

dkpke
i2πkω

∣∣∣∣∣ ,
(S11)

where CN =
∑N
k1=0

1
(k1+1)2 ≤

2N+1
N+1 , which yields the

conclusion in (S10).

Lemma 2. Let {dk}2Nk=0 and {pk}2Nk=0 be the sequences defined
in Theorem 1 and Lemma 1. If RN and QN are defined as

R2
N =

2N∑
k=0

|dk|2 and Q4
N =

2N∑
k=0

|dk|4 ,

then there exists a constant C such that

E

(
sup

0≤ω≤1

∣∣∣∣∣
2N∑
k=0

dkpke
i2πkω

∣∣∣∣∣
)
≥ C

√
R2
N

(
1 + log

R4
N

Q4
N

)
,

(S12)

Lemma 2 is a special case of Theorem in [5]. Details of the
proof is shown as below.

Here is the proof of Lemma 2.

Proposition 1. [5] For every M <∞ there exists a constant
C(M) > 0 such that, whenever {ψk}2Nk=0 is a system of
functions in an L2(µ)-space satisfying

(1◦) ‖ψk‖L2(µ)
= 1 and ‖ψk‖L3(µ)

≤M , for all 0≤k≤2N ,

(2◦)
∥∥∥∑2N

k=0 dkψk

∥∥∥
L2(µ)

≤M
√∑2N

k=0 |dk|
2, for all

0≤k≤2N ,
and {pk}2Nk=0 are independent random variables over a

probability space (T, T , τ) with

(3◦) E (pk) = 0, E |pk|2 = 1, and 3

√
E |pk|3≤M , for all

0≤k≤2N ,
then, for any choice of the coefficients of {dk}2Nk=0, we have

E

∥∥∥∥∥
2N∑
k=0

dkpkψk

∥∥∥∥∥
L∞(µ)

≥C

√√√√ 2N∑
k=0

|dk|2

√√√√√1 + log

(∑2N
k=0 |dk|

2
)2

∑2N
k=0 |dk|

4
.

Proof. According to (S11), ψk = ei2πkω . It is obvious that for
all 0≤k≤2N ,

∥∥ei2πkω∥∥
L2(µ)

= 1 and
∥∥ei2πkω∥∥

L3(µ)
= 1. (S13)

According to the triangle inequality,∥∥∥∥∥
2N∑
k=0

dkψk

∥∥∥∥∥
L2(µ)

≥

√√√√∫ 1

0

2N∑
k=0

|dkei2πkω|2 dω =

√√√√ 2N∑
k=0

|dk|2.

(S14)
pk is a random variable which satisfies normal distribution,

thus

E (pk) = 0,E |pk|2 = 1 and 3

√
E |pk|3 = 0. (S15)

Combining (S13), (S14) and (S15) yields Lemma 2.

Combining Lemma 1 and Lemma 2 results in Theorem 1.

IV. THE PROOF OF THEOREM 2
Proof. We express Z as a sum of independent matrices such
that

Z =

2N∑
k=0

1

wk
zkBk, (S16)

where Bk ∈ R(N+1)×(N+1) has one on the (k + 1)th skew
diagonal and all other entries are 0. For example,

B1 =


0 1 · · · 0
1 0 · · · 0
...

...
...

...
0 0 · · · 0

 .
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According to [6],

E ‖Z‖2≤
√
2ν2 (Z) log (2N + 2), (S17)

where ν2 (Z) = max
{∥∥E (ZHZ

)∥∥
2
,
∥∥E (ZZH

)∥∥
2

}
. The

parameter ν2 (Z) can be calculated as follows∥∥E (ZHZ
)∥∥

2
=
∥∥E (ZZH

)∥∥
2

=

∥∥∥∥∥∥E
( 2N∑

k=0

zk
wk

Bk

)(
2N∑
m=0

zm
wm

Bm

)H∥∥∥∥∥∥
2

=

∥∥∥∥∥E
(

2N∑
k=0

|zk|2

w2
k

BkB
H
k

)∥∥∥∥∥
2

.

(S18)
Denote the diagonal matrix Ck = BkB

H
k ∈ R(N+1)×(N+1),

k = 0, 1, · · · , 2N . When 0≤k≤N , the first k+1 diagonal en-
tries of Ck are one, and others are zero. When N+1≤k≤2N ,
the last 2N +1−k diagonal entries of Ck are one, and others
are zero. For example,

C1 =


1

1
. . .

0

 and CN+1 =


0

1
. . .

1

 .
Substituting (S18) into the definition of ν2 (Z) in (S17)

results in

ν2 (Z) =

∥∥∥∥∥E
(

2N∑
k=0

|zk|2

w2
k

Ck

)∥∥∥∥∥
2

= σ2Cw. (S19)

Finally we combine (S19) and (S17) to obtain Theorem 2.

V. ASYMPTOTIC ANALYSIS OF THE ESTIMATES OF BOUNDS

Theorem 1. Let RN and QN be defined as Theorem 1. Then
there exists a constant CL > 0 such that

lim
N→+∞

(N + 1)C

2N + 1

√
R2
N

(
1 + log

R4
N

Q4
N

)
= CL. (S20)

The proof of Theorem 1 is based on two lemmas below
which study the asymptotic of R2

N and Q4
N as N →∞.

Lemma 3. Let RN be defined as R2
N =

∑2N
k=0 |dk|

2. Then
there exists a constant CR > 0 such that

lim
N→+∞

R2
N = CR. (S21)

Lemma 4. Let QN be defined as Q4
N =

∑2N
k=0 |dk|

4. Then
there exists a constant CQ > 0 such that

lim
N→+∞

Q4
N = CQ. (S22)

Lemma 3 and Lemma 4 are proved as following.
Here is the proof of Lemma 3.

Proof. According to the definition, R2
N is expressed as

R2
N = 4

N∑
k=0

(
1

(k + 1)(k + 2)

k∑
m=0

1

m+ 1

)2

︸ ︷︷ ︸
R

(1)
N

+ 4

2N∑
k=N+1

(
1

(2N − k + 1)(k + 2)

2N∑
m=k

1

m−N + 1

)2

︸ ︷︷ ︸
R

(2)
N

.

(S23)
The sequence R(1)

N is positive, and increases as N increases.
It is straight forward

1 ≤
k∑

m=0

1

m+ 1
≤k + 1. (S24)

Let F1(N) =
∫ N
0

1
(l+1)2(l+2)2

dl. The sequence R(1)
N satis-

fies the following upper bound and lower bound

R
(1)
N ≥

N∑
k=0

1

(k + 1)
2
(k + 2)

2 > F1(N)

=
3

2
− 2 log 2−

(
1

N + 1
+

1

N + 2

)
+ 2 log

(
1 +

1

N + 1

)
,

(S25)

and

R
(1)
N ≤

N∑
k=0

1

(k + 2)
2 < 1− 1

N + 2
. (S26)

Combining (S25) and (S26) gives rise to

3

2
− 2 log 2 < lim

N→+∞
R

(1)
N < 1. (S27)

Since R(1)
N increases as N increases,

lim
N→+∞

R
(1)
N = CR1 , (S28)

where 3
2 − 2 log 2 < CR1

< 1.
The sequence R(2)

N can be rewritten as

R
(2)
N =

N−1∑
k=0

(
1

(N − k)(k +N + 3)

N−1−k∑
m=0

1

m+ k + 2

)2

.

(S29)

For
(∑N−1−k

m=0
1

m+k+2

)2
where k = 0, 1, · · · , N − 1, it is

obvious that

(
N−1−k∑
m=0

1

m+ k + 2

)2

≤

(
N−1∑
m=0

1

m+ 2

)2

.
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According to Cauchy-Buniakowsky-Schwarz inequality,(
N−1∑
m=0

1

m+ 2

)2

≤
N−1∑
m=0

(
1

m+ 2

)2 N−1∑
m=0

1

< N

(
1− 1

N + 1

)
< N.

(S30)

We have

0 <

N−1−k∑
m=0

1

m+ k + 2
<
√
N. (S31)

Denote g(k) = N
(N−k)2(k+N+3)2

where k =

0, 1, 2, · · · , N − 1.
The limit of

∑N−1
k=0 g(k) can be calculated as

N−1∑
k=0

N

(N − k)2 (k +N + 3)
2

=

N−1∑
k=0

2N

(2N + 3)3(N − k)
+

2N

(2N + 3)3(k +N + 3)

+

N−1∑
k=0

N

(2N + 3)2(N − k)2
+

N

(2N + 3)2(k +N + 3)2

<
4N2

(2N + 3)3
+

2N − 1

(2N + 3)3
+

N2

(N + 1)(N + 2)(2N + 3)2

,

(S32)
thus

lim
N→+∞

N−1∑
k=0

g(k) = 0. (S33)

Since R(2)
N ≥ 0 and it satisfies R(2)

N <
∑N−1
k=0 g(k),

lim
N→+∞

R
(2)
N = 0. (S34)

Combining (S27) and (S33) results in Lemma 3.

Lemma 4 is proved is below.

Proof. According to the definition, Q4
N is given by

Q4
N = 16

N∑
k=0

(
1

(k + 1)(k + 2)

k∑
m=0

1

m+ 1

)4

︸ ︷︷ ︸
Q

(1)
N

+ 16

2N∑
k=N+1

(
1

(2N − k + 1)(k + 2)

2N∑
m=k

1

m−N + 1

)4

︸ ︷︷ ︸
Q

(2)
N

.

(S35)
The same technique as Lemma 3 to prove (S35)

111

8
− 20 log 2 ≤ lim

N→+∞
Q

(1)
N <

1

3
, (S36)

and the details will not be shown here.
The sequence Q(2)

N is restated as

Q
(2)
N =

N−1∑
k=0

(
1

(N − k)(k +N + 3)

N−1−k∑
m=0

1

m+ k + 2

)4

.

(S37)
According to (S29),(

N−1−k∑
m=0

1

m+ k + 2

)4

≤

(
N−1∑
m=0

1

m+ 2

)4

< N2

< (k +N + 3)3.

(S38)

0 <

(
N−1−k∑
m=0

1

m+ k + 2

)4

< (k +N + 3)3. (S39)

Define h(k) = 1
(N−k)4(k+N+3)

where k = 0, 1, 2, · · · , N −
1, then the limit of

∑N−1
k=0

1
(N−k)4(k+N+3)

can be calculated
as
N−1∑
k=0

1

(N − k)4 (k +N + 3)

=

N−1∑
k=0

1

(2N + 3)4(N − k)
+

N−1∑
k=0

1

(2N + 3)3(N − k)2

+

N−1∑
k=0

1

(2N + 3)2(N − k)3
+

N−1∑
k=0

1

(2N + 3)(N − k)4

+

N−1∑
k=0

1

(2N + 3)4(k +N + 3)

<
2N

(2N + 3)
4 +

2N − 1

N(2N + 3)3
+

2N − 1

N(2N + 3)2
+

2N − 1

N(2N + 3)
.

(S40)
Thus

lim
N→+∞

N−1∑
k=0

h(k) = 0. (S41)

Since sequence Q(2)
N ≥0 and it satisfies Q(2)

N <
∑N−1
k=0 h(k),

lim
N→+∞

Q
(2)
N = 0. (S42)

Combining (S36) and (S42) yields Lemma 4.

Combining Lemma 3 and Lemma 4 gives rise to

lim
N→+∞

(N + 1)C

2N + 1

√
R2
N

(
1 + log

R4
N

Q4
N

)

= C

√
CR

(
1 + log

C2
R

CQ

)
lim

N→+∞

(N + 1)

2N + 1

=
C

2

√
CR

(
1 + log

C2
R

CQ

)
,

(S43)

which gives rise to Theorem 1 with

CL =
C

2

√
CR

(
1 + log

C2
R

CQ

)
.
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When N is large enough, the upper bound and the lower
bound only differ by a factor of

√
logN . According to the

analysis above, we suggest to choose E ‖Z‖2 as

E ‖Z‖2 =
C(N + 1)

(2N + 1)

√
R2
N

(
1 + log

R4
N

Q4
N

)
σ. (S44)

VI. THE KS TEST IN THE NOISE ESTIMATE

In the main text, we introduce KS test into the noise estimate
to ensure that the truncated signals satisfy the Gaussian distri-
bution. In order to avoid the bias, the p values with different
truncated lengths under various noise levels are tested on three
synthetic exponential signals with varying decays (See Figs.
S2 and S3).
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Fig. S2. Synthetic exponential signals used to test p values. (a)-(c) represents
the real part of three FID signals with fast, moderate, and slow decay,
respectively.
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Fig. S3. The p values with different truncated lengths under various noise
levels. (a)-(c) are p values of signals in Fig. S2(a) under noise with σ = 0.01,
0.03, and 0.05. (d)-(f) are p values of signals in Fig. S2(b) under noise with
σ = 0.01, 0.03, and 0.05. (g)-(i) are p values of signals in Fig. S2(c) under
noise with σ = 0.01, 0.03, and 0.05. Note: The curves denote the average
of p values. The bars represent the standard deviation and come from the
randomness of noise.

Results in Figs. S2 and S3 confirm our conclusions in the
main text. Therefore, we suggest p = 0.8 as the threshold in
the noise estimate.

Fig. S4. The flowchart of the noise estimate based on KS test in the proposed
method.

VII. THE EFFECT OF PHASE

In Section V.B, the effect of the zero-order and relative
phase has been discussed. In this section, we presented the
denoised synthetic spectra with 256 and 1024 points to avoid
the bias. Spectra and the errors in Figs. S5 to S8 confirm the
conclusion (Figs. 12 and 13 in the main text) that, the slight
change of E

∥∥∥X̃∥∥∥
2

does not greatly affect the denoising.
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Fig. S5. The comparison of 256-point denoised spectra with the zero-order
phase under the new and the suggested E

∥∥∥X̃∥∥∥
2

values. (a) and (b) denote
the synthetic signals without and with noise (σ = 0.02). (c) and (e) are the
denoised results of CHORD with the new value (1.84σ) and the suggested
value (1.94σ), respectively. (d) and (f) stand for the denoising errors of spectra
that correspond to (c) and (e), respectively. The brown long dash lines denote
the MAEs of the denoised spectra.
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Fig. S6. The comparison of 1024-point denoised spectra with the zero-order
phase under the new and the suggested E
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2

values. (a) and (b) denote
the synthetic signals without and with noise (σ = 0.02). (c) and (e) are the
denoised spectra of CHORD with the new value (1.84σ) and the suggested
value (1.94σ), respectively. (d) and (f) stand for the denoising errors of spectra
that correspond to (c) and (e), respectively. The brown long dash lines denote
the MAEs of the denoised spectra.
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Fig. S7. The comparison of 256-point denoised spectra with the relative
phase under the new and the suggested E
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values. (a) and (b) denote
the synthetic signals without and with noise (σ = 0.02). (c) and (e) are the
denoised spectra of CHORD with the new value (1.87σ) and the suggested
value (1.94σ), respectively. (d) and (f) stand for the denoising errors of spectra
that correspond to (c) and (e), respectively. The brown long dash lines denote
the MAEs of the denoised spectra.
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Fig. S8. The comparison of 1024-point denoised spectra with the relative
phase under the new and the suggested E
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values. (a) and (b) denote
the synthetic signals without and with noise (σ = 0.02). (c) and (e) are the
denoised results of CHORD with the new value 1.87σ and the suggested
value 1.94σ, respectively. The brown long dash lines denote the MAEs of
the denoised spectra.

VIII. COMPARISON WITH CS AND CHORD-DP

Due to the overlength of the main text, the denoised spectra
and the errors of simulated signals are shown in this section.

A. CS
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Fig. S9. The NRMSE of CS and CHORD for the synthetic data under different
noise levels. The height of columns shows the average of the NRMSEs over
100 trials. The vertical bar comes from the randomness of noise. Note: The
standard deviation of the noise is estimated, and the details of noise estimate
has been explained in the main text Section V.A.
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Fig. S10. Denoised results of synthetic data by CS and CHORD. (a) and (b)
denote the synthetic signals without and with noise (σ = 0.04), respectively.
(c) and (e) are the denoised spectra of CS and CHORD. (d) and (f) stand for
the denoising errors of two methods, respectively. The brown long dash lines
denote the MAEs of the denoised spectra.

B. CHORD-DP
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Fig. S11. The NRMSE of CHORD-DP for synthetic data under different
noise levels. The height of columns shows the average of the NRMSEs over
100 trials. The vertical bar comes from the randomness of noise. Note: The
standard deviation of the noise is estimated, and the details of noise estimate
has been explained in the main text Section V.A.
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Fig. S12. The typical denoised spectra of CHORD-DP and CHORD. (a)
and (b) denote the synthetic signals without and with noise (σ = 0.04),
respectively. (c) and (e) denote sepctra of CHORD with parameter estimated
by DP and the suggested parameter. (d) and (f) stand for the denoising errors
of two methods, respectively. The brown long dash lines denote the MAEs
of the denoised spectra.

IX. OTHER FACTORS AFFECTING E
∥∥∥X̃∥∥∥

2

In this section, we force the amplitude and damping factor
of exponentials to satisfy the Poisson and Beta distributions,
respectively. The frequency is still uniformly sampled to
maintain the maximum randomness.

Following the main text and other publication [7], we ran-
domly generated 90 exponential signals with different lengths
(255, 511, and 1023). Each signal has 3R + 1 parameters,
including R, ar, fr and τr, where r = 1, 2, · · · , R. The
exponential components are R = 4+Mr, where Mr denotes a
pseudo-random scalar integer of range [1, 9]. Each frequency
fr is uniformly sampled from (0, 1).

1) Poisson distribution: The amplitude ar is i.i.d Poisson
with mean 5 and variance 5. The damping coefficient is τr =
5+mr, where mr satisfies the Poisson distribution with mean
30 and variance 30.

2) Beta distribution: The amplitude ar is i.i.d. Beta with
mean 5 and variance 27.27. The damping coefficient is τr =
5+60mr, where mr satisfies the Beta distribution with mean
0.5 and variance 0.27.

A grid search method is adopted to estimate the empirical
distribution of E

∥∥∥X̃∥∥∥
2
. For each length, we randomly selected

3 signals (Green, blue, and red lines in Figs. S13 and S14)
and used color lines to present the distribution of E

∥∥∥X̃∥∥∥
2

(the
average and the standard deviation).
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Fig. S13. The relation between
∥∥∥X̃∥∥∥

2
given by random synthetic signals

with Poisson distribution and noise levels. (a)-(c) show the spectral norm of
X̃ which is of size (N + 1) × (N + 1)with (N + 1) = 128, 256, 512,
respectively. The vertical error bars come from 50 Monte Carlo trials. For
each sub-plot, the green, blue, and red lines denote

∥∥∥X̃∥∥∥
2

given by different
random signals.
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Fig. S14. The relation between
∥∥∥X̃∥∥∥

2
given by random synthetic signals with

Beta distribution and noise levels. (a)-(c) show the spectral norm of X̃ which
is of size (N+1)×(N+1)with (N+1) = 128, 256, 512, respectively. The
vertical error bars come from 50 Monte Carlo trials. For each sub-plot, the
green, blue, and red lines denote

∥∥∥X̃∥∥∥
2

given by different random signals.
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Fig. S15. The comparison of denoised spectra with Poisson distribution under
the new and the suggested E

∥∥∥X̃∥∥∥
2

values. (a) and (b) denote the 512-point
synthetic signals without and with noise (σ = 0.02). (c) and (e) are the
denoised spectra obtained by CHORD with the new value (2.01σ) and the
suggested value (1.94σ), respectively. (d) and (f) stand for the denoising errors
of spectra that correspond to (c) and (e), respectively. Note: The brown long
dash lines denote the MAEs of the denoised spectra.
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Fig. S16. The comparison of denoised spectra with Beta distribution under
the new and the suggested E
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2

values. (a) and (b) denote the 512-point
synthetic signals without and with noise (σ = 0.01). (c) and (e) are the
denoised spectra of CHORD with the new value (1.99σ) and the suggested
value (1.94σ), respectively. (d) and (f) stand for the denoising errors of spectra
that correspond to (c) and (e), respectively. Note: The brown long dash lines
denote the MAEs of the denoised spectra.

For Poisson and Beta distributions, the averaged slopes (Figs
S13 and S14), e.g. the ratio of E

∥∥∥X̃∥∥∥
2

over noise standard
deviation, are 2.01 and 1.99, respectively. Compared with the
suggested value 1.94 in the main text, the relative change
in slope is small (4% for Poisson distribution and 3% for
Beta distribution). This slight change did not greatly affect
the denoising (Figs. S15 and S16).
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Figs. S17 and S18 show the denoising error of the spectra at
different noise levels. These two figures imply that there are
two types of errors, noise fluctuation at the no-peak region
and pseudo peaks at the locations of true peaks. Thus,

∥∥∥X̃∥∥∥
2

can be affected by both noise and spectrum. Additionally, the
error of denoising is increased with the increase of noise since
the denoising becomes harder for heavier noise, although the
noiseless spectrum does not change.
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Fig. S17. The simulated noiseless signal with Poisson distribution, the
denoised spectra and their error of CHORD denoising under three noise levels.
(a) denotes the noiseless synthetic signal with 512 points. (b)-(d) denote
the noisy, denoised, and error spectra under the noise standard deviation
σ = 0.015, 0.025, and 0.035, respectively. Note: The brown long dash lines
denote the MAEs of the denoised spectra. The grey fluctuation is the pure
noise.
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Fig. S18. The simulated noiseless signal with Beta distribution, the denoised
spectra and their error of CHORD denoising under three noise levels. (a)
denotes the noiseless synthetic signal with 512 points. (b)-(d) denote the noisy,
denoised, and error spectra under the noise standard deviation σ = 0.015,
0.025, and 0.035, respectively. Note: The brown long dash lines denote the
MAEs of the denoised spectra. The grey fluctuation is the pure noise.

Combing the observations that a higher noise leads to
greater error of denoising (Figs. S17 and S18), we can
conclude that the standard deviation of noise is the main factor
that determines E

∥∥∥X̃∥∥∥
2
. Thus, even with Poisson or Beta

distributions, the suggested automatic denoising approach is
still very valuable.

X. THE DENOISING OF RANDOM SIMULATED DATA

We randomly generated three exponential signals with dif-
ferent lengths. Each signal has 3R + 1 parameters, including

R, ar, fr and τr, where r = 1, 2, · · · , R. The number of
exponential components is R = 4+Mr, where Mr denotes a
pseudo-random scalar integer of range [1, 9]. The amplitude
ar is uniformly sampled from (0, 10). Each frequency fr
is uniformly sampled from (0, 1). The damping factor is
τr = 5 + 60mr, where mr is uniformly sampled from (0, 1).

The denoised spectra in Figs. S19-S22 also confirm our
original conclusions. With the increase of noise levels,
CHORD provides lower NRMSE (Fig. S19). For the denoised
spectra, Cadzow and rQRd lead to missing and weaken peaks
that are in low intensity (Black arrows in Figs. S20-S22).
CHORD preserves low intensity peaks better.
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Fig. S19. The NRMSE for random synthetic data under different noise levels. (a)-(c) denote the NRMSE for synthetic data with 256, 512, and 1024 points,
respectively. The height of columns shows the average of the NRMSEs over 50 trials. The vertical bar comes from the randomness of noise.
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Fig. S20. The denoised spectra of random synthetic data with 256 points. (a) and (b) denote the synthetic signals without and with noise (σ = 0.02). (c),
(e), (g), and (i) are the denoised results of Cadzow, rQRd, CHORD-DP, and CHORD, respectively. (d), (f), (h), and (j) stand for the denoising error of four
methods. Note: The results of Cadzow and rQRd that enable the lowest NRMSE are presented here. The brown long dash lines denote the MAEs of the
denoised spectra.
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Fig. S21. The denoised spectra of random synthetic data with 512 points. (a) and (b) denote the synthetic signals without and with noise (σ = 0.03). (c),
(e), (g), and (i) are the denoised results of Cadzow, rQRd, CHORD-DP, and CHORD, respectively. (d), (f), (h), and (j) stand for the denoising error of four
methods. Note: The results of Cadzow and rQRd that enable the lowest NRMSE are presented here. The brown long dash lines denote the MAEs of the
denoised spectra.
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Fig. S22. The denoised spectra of random synthetic data with 1024 points. (a) and (b) denote the synthetic signals without and with noise (σ = 0.02). (c),
(e), (g), and (i) are the denoised results of Cadzow, rQRd, CHORD-DP, and CHORD, respectively. (d), (f), (h), and (j) stand for the denoising error of four
methods. Note: The results of Cadzow and rQRd that enable the lowest NRMSE are presented here. The brown long dash lines denote the MAEs of the
denoised spectra.
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