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Abstract—The boom of non-uniform sampling and compressed
sensing techniques dramatically alleviates the lengthy data ac-
quisition problem of magnetic resonance imaging. Sparse re-
construction, thanks to its fast computation and promising
performance, has attracted researchers to put numerous efforts
on it and has been adopted in commercial scanners. To perform
sparse reconstruction, choosing a proper algorithm is essential in
providing satisfying results and saving time in tuning parameters.
The pFISTA, a simple and efficient algorithm for sparse recon-
struction, has been successfully extended to parallel imaging.
However, its convergence criterion is still an open question. And
the existing convergence criterion of single-coil pFISTA cannot be
applied to the parallel imaging pFISTA, which, therefore, imposes
confusions and difficulties on users about determining the only
parameter - step size. In this work, we provide the guaranteed
convergence analysis of the parallel imaging version pFISTA to
solve the two well-known parallel imaging reconstruction models,
SENSE and SPIRiT. Along with the convergence analysis, we
provide recommended step size values for SENSE and SPIRiT
reconstructions to obtain fast and promising reconstructions.
Experiments on in vivo brain images demonstrate the validity of
the convergence criterion. Besides, experimental results show that
compared to using backtracking and power iteration to determine
the step size, our recommended step size achieves more than five
times acceleration in reconstruction time in most tested cases.

Index Terms—Parallel imaging, image reconstruction, pFISTA,
convergence analysis

I. INTRODUCTION

MAGNETIC resonance imaging (MRI) is a non-invasive,
non-radioactive, and versatile technique serving as a

widely adopted and indispensable tool in medical diagnosis.
However, the slow imaging speed impedes its development.
The advent of sparse sampling and compressed sensing (CS)
theory [1]–[3] meets the eager demand of fast scan through
sampling only a small amount of data points and recovering
the missing data using well-developed reconstruction methods.
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Sparsity [3]–[12], low rank [13]–[17], and sparsity plus
low rank [18]–[21] are common-adopted priors used in MRI
image reconstruction. In this work, we will focus on sparse
reconstructions. Particularly, most emphasis will be put into
algorithms to solve sparse reconstruction models. The sparse
representation adopted to empower the image to be sparse
plays a crucial role in designing a reconstruction approach. To
the best of our knowledge, sparse representation approaches
could be categorized into two main genres: orthogonal [3],
[9], [12] and redundant representation systems [4]–[8], [10],
[11], [22], [23]. Representation systems that can sparsify MRI
images include transforms, such as wavelets, dictionaries,
adaptive representations, etc. The redundant representation
systems are favored in sparse MRI reconstructions as they
enable sparser image representation than the orthogonal rep-
resentation systems can do, suggesting better noise removal
and artifacts suppression in applications.

Redundant representation systems are described by frame,
mostly tight frame [24], [25], leading to two distinct kinds
of reconstruction models, the synthetic model [1], [2], [26],
and the analysis model [27]–[29]. The readers are referred
to [25] for definitions of the tight frame, analysis model, and
synthetic model in CS MRI. The analysis model, assuming the
coefficients in the transform domain of an image to be sparse,
and synthesis model, considering an image as a linear combi-
nation of sparse coefficients, have different prior assumptions.
Even with the same MRI data, sampling pattern, and sparse
transform, the analysis model is observed to yield improved
reconstruction results compared to the synthesis model [25],
[30]. Besides, it has been shown that the balanced model lies
in between the synthetic model and the analysis model. In the
context of MRI reconstruction, Liu et al. empirically explored
the performance of the balanced model and observed that the
balanced model has a comparable reconstruction performance
with the analysis model [30].

Analysis models, though enable better reconstructions with
smaller errors, still have a compelling demand for fast al-
gorithms that allow favorable convergence speed and fewer
parameters. Many algorithms have been developed to solve the
analysis models [31], such as alternating direction methods of
multipliers (ADMM) [32], [33], nonlinear conjugate gradient
(NLCG) [3], variants of Nesterov’s algorithm [34]–[36], and
Douglas Rachford splitting [37], [38]. However, they are time-
and memory-demanding or vulnerable to parameter selections.
The original iterative shrinkage threshold algorithm (ISTA)
[39] and its acceleration version - fast ISTA (FISTA) [40] are
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efficient and robust. Nevertheless, they are limited to solve
the synthesis model. Numerous efforts have been made by
researchers to improve FISTA, providing us many variants
of FISTA [41], [42]. Some variants of FISTA have been
proposed to solve analysis models, such as MFISTA-FGP [43],
which provides guaranteed non-increasing function values
and MFISTA-VA [44] which utilizes variables acceleration
to achieve faster convergence speed while keeping the mono-
tonality. However, they are either computational demanding or
have more than one parameter to tune. In contrast, a variant
of FISTA developed by our group named projected iterative
soft-threshold algorithm (pISTA) and its acceleration version
- pFISTA [25], enables faster reconstructions, requires less
memory space and has only one adjustable parameter, the step
size γ. Moreover, its convergence criterion has been provided
in the paper [25]. Also, Liu et al. [25] converted the analysis
model into an equivalent synthesis-like one with a constraint
on its range, which then solved by orthogonal projection, and
theoretically proved that the pFISTA converges to a balanced
model.

The pFISTA, however, has limitations, such as it could not
deal with the total variation (TV), and it is limited to tackle
single-coil image reconstruction problems. To solve the single-
coil problem, Ting et al. independently proposed a computa-
tionally efficient balanced sparse reconstruction method in the
context of parallel MRI under tight frame [45], [46], named
bFISTA, and applied bFISTA to two widely adopted parallel
imaging models, sensitivity encoding (SENSE) method [47]
and iterative self-consistent parallel imaging reconstruction
(SPIRiT) [48]. However, the authors did not provide proof
of the convergence of bFISTA; that is to say, in practice,
there is no guidance about how to choose γ. In addition,
the convergence criterion proved for the single-coil pFISTA
cannot be directly applied to the multi-coil cases. Therefore,
the algorithm users would encounter a problem of how to
choose a proper γ to produce faithful results. We give an
example in Fig. 2 (Section III-B) to demonstrate this issue.
Besides, backtracking and power iteration, though being useful
to calculate the γ, are time-consuming (Section V). Due to the
importance of parallel imaging, it is necessary to give a clear
mathematical proof of its convergence to assist in setting a
proper γ.

In this work, we provide sufficient conditions for the con-
vergence of parallel imaging version pFISTA and explicitly
provide convergence criteria of applying pFISTA on solving
two exemplars of parallel imaging reconstruction methods
- SENSE and SPIRiT. With the convergence analysis, rec-
ommend γ for SENSE and SPIRiT reconstructions using
pFISTA to permit the fastest convergence speed and promising
results. We first assess the influence of the gap between the
recommended γ and hand-tuned optimal γ on the convergence
speed. Then we compare our method with backtracking and
power iteration, in which our recommended γ is much faster
and enables reliable reconstructions. Also, we compare other
variants of FISTA, ADMM, NLCG, and pFISTA. Furthermore,
we discuss the results of applying pFISTA on parallel recon-
struction models under different tight frames.

The rest of the paper is organized as follows. In Section

II, we introduce the notations. In Section III, we introduce
some related works, firstly the pFISTA, and then SENSE and
SPIRiT. In section IV, we prove that the parallel imaging
version pFISTA converges under a proper selection of the
step size. Furthermore, we offer the convergence criteria of
pFISTA when applied to tackle SENSE and SPIRiT models.
In Section V, we demonstrate the usefulness of the criteria we
provided with multiple parallel imaging brain images. Finally,
conclusions will be drawn in Section VI.

II. NOTATIONS

We first introduce notations used throughout this paper. We
denote vectors by bold lowercase letters and matrices by bold
uppercase letters. The transpose and conjugate transpose of a
matrix are denoted by XT and XH . For any vector x, ‖x‖1
and ‖x‖2 denote the `1 and `2 norm for vectors, respectively.
For a matrix X, ‖X‖2 denotes the `2 norm for matrix, which
is the largest singular value of matrix X and also the square
root of the largest eigenvalue of the matrix XHX.

Operators are denoted by calligraphic letters. Let DM
denotes block diagonalization operator which places any M
matrices of the same size, X1, · · · ,XM , along with the
diagonal entries of a matrix with zeros:

DM (X1, · · · ,XM ) =




X1 0
. . .

0 XM


 . (1)

III. RELATED WORK

A. pFISTA for Single-Coil MRI Reconstruction

An analysis model for single-coil sparse MRI reconstruction
could be formulated as

min
xs

λ‖Ψxs‖1 +
1

2
‖ys −UFxs‖22 , (2)

where xs ∈ CN denotes the single-coil MR image data
rearranged into a column vector, ys ∈ CM the single-
coil undersampled k-space data, U ∈ RM×N (M � N) the
undersampling matrix, and F ∈ CN×N the discrete Fourier
transform. Ψ is a tight frame, and the constant λ is the
regularization parameter to balance the sparsity and data
consistency.

To solve the problem (2), pFISTA rewrites the formula
mentioned above as a synthetic model as

min
α∈Range(Ψ)

λ‖α‖1 +
1

2
‖ys −UFΨ∗α‖22 , (3)

where Ψ∗ denotes the adjoint of Ψ, and specifically satisfies
Ψ∗Ψ = I. α contains the coefficients of an image under the
representation of a tight frame Ψ∗.

According to [25], the main iterations of pFISTA to solve
the problem in Eq. (3) are

x(k+1)
s =Ψ∗Tγλ

(
Ψ
(
x̂(k)
s +γFHUT

(
ys−UFx̂(k)

s

)))
,

t(k+1) =
1 +

√
1 + 4

(
t(k)
)2

2
,

x̂(k+1)
s =x(k+1)

s +
t(k) − 1

t(k+1)

(
x(k+1)
s − x(k)

s

)
,

(4)
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where Tγλ (·) is a point-wise soft-thresholding function de-
fined as Tγλ (α) = max {|α| − γλ, 0} · α/|α|.

According to Theorem 2 in the pFISTA paper [25], when the
step size 0 < γ ≤ 1, the algorithm will converge. Besides, the
larger γ is, the faster pFISTA converges. Therefore, γ = 1 is
recommended in pFISTA to produce promising reconstruction
with the fastest convergence speed.

B. pFISTA for Multi-Coil MRI Reconstruction

According to [45], we can formulate analysis models for
the parallel MRI reconstruction problem into a unified form
as

(pFISTA-parallel) min
d
λ‖Ψd‖1 + ‖y −Ad‖22 , (5)

where d represents the desired image to be recovered,
y = [y1; y2; · · · ; yJ ] ∈ CMJ the undersampled multi-coil
k-space data rearranged into a column vector, and yj ∈
CM (j = 1, 2, · · · , J) is the undersampled k-space data vec-
tor of jth coil, and A as a system matrix in parallel MRI,
including coils modulation, Fourier transform, and undersam-
pling.

For parallel MRI reconstruction methods based on different
signal properties, the explicit expressions of Eq. (5) would
vary. Two reconstruction algorithms based on SENSE and
SPIRiT are discussed in [45]. However, the convergence of
these two algorithms has not been proven. Thus, in this work,
we first prove the convergence of pFISTA of solving the
general parallel MRI reconstruction model and then offer two
concrete examples of multi-coils MRI analysis model, SENSE
and SPIRiT, with convergence analysis. We first introduce how
to solve SENSE and SPIRiT using pFISTA.

1) pFISTA-SENSE: As shown in Fig. 1 (a), in SENSE [47],
the image xj ∈ CN of the jth coil is represented as:

xj = Cjxc, j = 1, 2, ..., J, (6)

where xj and xc ∈ CN denote the jth coil image and the
composite MRI image rearranged into a column vector, Cj ∈
CN×N , (j = 1, 2, ..., J) is a diagonal matrix which contains
the sensitivity map of the jth coil.

The reconstruction problem based on SENSE can be for-
mulated as:

(pFISTA-SENSE) min
xc

λ‖Ψxc‖1 +
1

2

∥∥∥y − ŨF̃Cxc

∥∥∥
2

2
, (7)

where Ũ = DJ (U, · · · ,U), F̃ = DJ (F, · · · ,F), C =
[C1; C2; · · · ; CJ ] ∈ CNJ×N , Here, the system matrix A in
Eq. (5) has its explicit expression as A = ŨF̃C.

Using pFISTA, we can get the solution of Eq. (7) by
iteratively solving the following problems:

x
(k+1)
c = Ψ∗Tγλ

(
Ψ
(
x̂
(k)
c +γCH F̃HŨT

(
y−ŨF̃Cx̂

(k)
c

)))
,

t(k+1) =
1 +

√
1 + 4

(
t(k)
)2

2
,

x̂
(k+1)
c = x

(k+1)
c +

t(k) − 1

t(k+1)

(
x
(k+1)
c − x

(k)
c

)
.

(8)

For simplicity, we call the pFISTA adopted to solve SENSE
as pFISTA-SENSE.

Fig. 1. Parallel imaging reconstruction methods. (a) SENSE; (b) SPIRiT.
Here � denotes Hadamard product.

2) pFISTA-SPIRiT: The SPIRiT [48] primarily bases on
the assumption that each k-space data point of a given coil
is the convolution of the multi-coil data of its neighboring
k-space points, and the convolution kernels are estimated
from auto-calibration signal (ACS) (Fig. 1 (b)). Let x =
[x1; x2; · · · ; xJ ] ∈ CNJ denote the multi-coil image data rear-
ranged into a column vector, where xj ∈ CN , (j = 1, 2, · · · J)
is the jth coil image vector, then the calibration consistency
in image domain SPIRiT can be formulated as:

xj = [Wj,1,Wj,2, · · ·Wj,J ] x, (9)

where Wj,i ∈ CN×N (i = 1, 2, · · · , J) is a diagonal matrix
with the diagonal elements being the inverse Fourier transform
of the convolution kernel Kj,i in the Fig. 1 (b). Then, the `1-
SPIRiT reconstruction can be formulated as:

(pFISTA-SPIRiT)

min
x
λ‖Ψx‖1+ 1

2

∥∥∥y − ŨF̃x
∥∥∥
2

2
+ λ1

2 ‖(W − I) x‖22 ,
(10)

where the matrix W ∈ CNJ×NJ is

W =




W1,1 W1,2 · · · W1,J

W2,1 W2,2 · · · W2,J

...
...

. . .
...

WJ,1 WJ,2 · · · WJ,J


 . (11)

Notice that strictly speaking, the Ψ in Eq. (10) should be wrote
in the form of Ψ̃ = DJ (Ψ, · · · ,Ψ) indicating that the Ψ is
applied to each coil image. Here Ψ̃ is still a tight frame which
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satisfies Ψ̃∗Ψ̃ = I, we use only Ψ in the rest of the paper for
simplicity.

We reformulate Eq. (10) to line up with Equation (5) as:

(pFISTA-SPIRiT)

min
x
λ‖Ψx‖1+ 1

2

∥∥∥∥
[

I
0

]
y−
[

ŨF̃
−
√
λ1 (W − I)

]
x

∥∥∥∥
2

2

,
(12)

Here, the system matrix A has its explicit expression as A =[
ŨF̃ −

√
λ1 (W − I)

]T
.

Using pFISTA, we can get the solution of Eq. (12) by
iteratively solving the following problems:

x(k+1) = Ψ∗Tγλ
(
Ψ
(
x̂(k) + γ

(
F̃HŨT

(
y − ŨF̃x̂(k)

)

−λ1(W − I)H(W − I)x̂
)))

,

t(k+1) =
1 +

√
1 + 4

(
t(k)
)2

2
,

x̂(k+1) = x(k+1) +
t(k) − 1

t(k+1)

(
x(k+1) − x(k)

)
.

(13)

C. Connection Between pFISTA and A Balanced Model
Starting from an analysis model, pFISTA first converts the

analysis model into a synthetic-like model with a constraint
α ∈ Range (Ψ). Notably, the two models are equivalent [25].
Then the synthetic-like model with a constraint on the range
was solved with orthogonal projection.

Importantly, pFISTA happens to converge to a balanced
model with an `2-type penalty 1

2γ ‖(I−ΨΨ∗)α‖22. Despite
that FISTA can solve a general balanced model, the importance
of pFISTA is not hampered because, first, pFISTA introduces
only one parameter γ, and experimental results showed that
pFISTA reconstructions are robust to γ; second, pFISTA is
more memory-efficient as it performs reconstruction in the im-
age domain rather than the coefficients domain where FISTA
reconstructs the signal. FISTA has to allocate considerable
memory spaces to store the redundant coefficients.

It is worthy to point out that convergence analysis plays an
important role for users in determining the parameter to pro-
duce promising results. Despite pFISTA coincides with FISTA
if the weighting parameter of the term ‖(I−ΨΨ∗)α‖22 in a
balanced model is 1/γ [45], there are still strong demands for
analyzing the convergence of pFISTA solving analysis models,
or of FISTA solving the specific balanced model as they are
still open questions. In other words, we do not know explicitly
in advance which γ can guarantee the algorithm to converge.
Liu et al. [25] have proved that under the condition γ = 1,
pFISTA for single-coil MRI reconstruction is guaranteed to
converge. Nevertheless, if the same setting, γ = 1, is used
in pFISTA-SENSE and pFISTA-SPIRiT, the algorithms may
not converge (Fig. 2). This is because the sensitivity map or
convolution kernel would affect the convergence property of
pFISTA-parallel. We observed in experiments that a relatively
large γ leads to the divergence of pFISTA-parallel while a far
smaller one results in the slow convergence of the algorithm
(Fig. 2). Furthermore, the range of γ, allowing the algorithm
to converge, varies under different tested data. Therefore, we
aim to offer an explicit rule about how to choose a proper
γ of pFISTA-parallel to hold a fast convergence speed and
promising results.

Fig. 2. Empirical convergence of pFISTA-SENSE (a) and pFISTA-SPIRiT
(b) with different γ. The reconstruction experiments were carried out on a 32-
coil brain image with 34% data acquired using a Cartesian sampling pattern.
The sensitivity matrix C was normalized using its max absolute value. The
tested data and the sampling pattern are presented in Fig. 3.

IV. CONVERGENCE ANALYSIS

In this section, we prove the convergence of pFISTA-
parallel.

We present the analysis model of the parallel MRI recon-
struction in a unified formula shown in Eq. (5) in which the
system matrix A has its explicit form A = ŨF̃C if the model
is SENSE-based, and A =

[
ŨF̃ −

√
λ1 (W − I)

]T
if the

model is SPIRiT-based. According to [25], [40], let
{
d(k)

}
be

generated by pFISTA-parallel, and if the step size satisfies

γ ≤ 1

L (γ)
, (14)

and Ψ is a tight frame, the sequence
{
α(k)

}
=
{
Ψd(k)

}

converges to a solution of

min
α
λ‖α‖1+

1

2
‖y −AΨ∗α‖22+

1

2γ
‖(I−ΨΨ∗)α‖22 , (15)

with the speed

F
(
α(k)

)
− F (ᾱ) ≤ 2

γ(k + 1)
2

∥∥∥α(k) − ᾱ
∥∥∥
2

, (16)

where ᾱ is a solution of (15) and F (·) is the objective function
in (15) and L is the Lipschitz constant for the gradient term.

Let us denote
g (α) = λ‖α‖1,

f (α) =
1

2γ
‖(I−ΨΨ∗)α‖22 +

1

2
‖y −AΨ∗α‖22 .

(17)

Then the Lipschitz constant is

L (γ) = L (∇f) =

∥∥∥∥
1

γ
(I−ΨΨ∗) + ΨAHAΨ∗

∥∥∥∥
2

. (18)

Let
B = ΨAHAΨ∗ − 1

γ
ΨΨ∗ (19)

and B is a Hermitian matrix, then the matrix B + 1
γ I is also

a Hermitian matrix. Therefore, we have

L (γ) =

∥∥∥∥B +
1

γ
I

∥∥∥∥
2

= max
i

∣∣∣∣ei
(

B +
1

γ
I

)∣∣∣∣

=max
i

(∣∣∣∣ei (B) +
1

γ

∣∣∣∣
)
,

(20)

where ei (·) denotes the ith eigenvalue of matrix. Therefore,
the key point is to analyze the eigenvalue of matrix B. Suppose
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z is an eigenvector of B corresponding to the eigenvalue β,
by using the tight frame property, we have

Bz =

(
ΨAHAΨ∗ − 1

γ
ΨΨ∗

)
z = βz

⇒
(

AHA− 1

γ
I

)
(Ψ∗z) = β (Ψ∗z) ,

(21)

which indicates that all non-zero eigenvalues of B satisfy

ei (B) ∈
{
ei

(
AHA− 1

γ
I

)}
=

{
ei
(
AHA

)
− 1

γ

}
. (22)

Due to the redundancy, there exists α 6= 0 such that Ψ∗α =
0. Thus, there are zero eigenvalues of B:

ei (B) ∈
{

0, ei
(
AHA

)
− 1

γ

}
. (23)

Therefore,

L (γ)=max
i

(∣∣∣∣ei (B)+
1

γ

∣∣∣∣
)

=max
i

{
1

γ
,
∣∣ei
(
AHA

)∣∣
}
.

(24)
Now we are going to analyze the largest eigenvalue of

AHA in different reconstruction problems. In the following,
we will explicitly discuss the convergence of pFISTA-SENSE
and pFISTA-SPIRiT.

A. Convergence of pFISTA-SENSE

In this section, we provide sufficient conditions for the
convergence of pFISTA-SENSE in the form of a theorem.

Theorem 1. Let
{
x(k)

}
be generated by pFISTA-SENSE, and

if the sensitivity maps satisfies

CHC = I, (25)

the step size satisfies
γ ≤ 1, (26)

and Ψ is a tight frame, the sequence
{
α(k)

}
=
{

Ψx
(k)
c

}

converges to a solution of

min
α
λ‖α‖1+

1

2

∥∥∥y−ŨF̃CΨ∗α
∥∥∥
2

2
+

1

2γ
‖(I−ΨΨ∗)α‖22 .

(27)

Proof. In pFISTA-SENSE, we have A = ŨF̃C, thus,

AHA = CHF̃HŨT ŨF̃C. (28)

Let Q = FHUTUF, the matrix CH
j QCj is a Hermitian

matrix. For a Hermitian matrix, the largest eigenvalue is equal
to the `2 norm. In addition, notice that matrix `2 norm satisfies
triangle inequality and consistency property [49], we can
find the upper bound of the largest eigenvalue of the matrix
CHQC:

max
i
ei
(
CHQC

)
=
∥∥CHQC

∥∥
2
≤
∥∥CH

∥∥
2
‖Q‖2‖C‖2. (29)

Here, the matrix F is a unitary matrix, according to the unitary
invariant of `2 norm, we have

‖Q‖2 =
∥∥FHUTUF

∥∥
2

=
∥∥UTU

∥∥
2
. (30)

And UTU is a diagonal matrix with the diagonal elements 0
or 1, indicating that

‖Q‖2 = 1. (31)

With Eq. (31), we can further simplify Eq. (29)

max
i
ei
(
CHQC

)
≤
∥∥CH

∥∥
2
‖Q‖2‖C‖2 =

∥∥CH
∥∥
2
‖C‖2. (32)

Here, if C is normalized such that CHC = I, which is
quite common in practice, we can further obtain

‖C‖2=
√

max
i
ei (CHC) =

√
max
i
ei (I) = 1, (33)

and at the same time
∥∥CH

∥∥
2

= ‖C‖2 = 1. (34)

Finally, we have

max
i
ei
(
CHQC

)
≤
∥∥CH

∥∥
2
‖Q‖2‖C‖2 = 1. (35)

Therefore,

L (γ) = max
i

{
1
γ ,
∣∣ei
(
CHQC

)∣∣
}

= 1
γ , 0 < γ ≤ 1,

L (γ) = max
i

{
1
γ ,
∣∣ei
(
CHQC

)∣∣
}

= 1, γ > 1.
(36)

The Eq. (36) means that, when 0 < γ ≤ 1, one has L (γ) =
1/γ, which satisfies the convergence condition of pFISTA in
Eq. (14); whereas when γ > 1, then L (γ) = 1 > 1/γ, which
does not satisfy the convergence condition of pFISTA. In
summary, when 0 < γ ≤ 1, the pFISTA-SENSE is guaranteed
to converge.

B. Convergence of pFISTA-SPIRiT

In this section, we provide sufficient conditions for the
convergence of pFISTA-SPIRiT in the form of a theorem.

Theorem 2. Let
{
x(k)

}
be generated by pFISTA-SPIRiT, and

if the step size satisfies

γ ≤ 1

c
, c =

z∑

i=−z
‖Zdiag,i‖2 +

J−1∑

i=z+1

‖Zdiag,i‖2, (37)

and Ψ is a tight frame, the sequence
{
α(k)

}
=
{
Ψx(k)

}

converges to a solution of

min
α
λ‖α‖1 +

1

2γ
‖(I−ΨΨ∗)α‖22

+
1

2

∥∥∥∥y −
[

ŨF̃
−
√
λ1 (W − I)

]
Ψ∗α

∥∥∥∥
2

2

.

(38)

Proof. In pFISTA-SPIRiT, we have

AHA =
[

F̃HŨT −
√
λ1(W − I)H

] [ ŨF̃
−
√
λ1 (W − I)

]

=
(
F̃HŨT ŨF̃ + λ1(W − I)H (W − I)

)
.

(39)

Since AHA is a Hermitian matrix, the maximum eigenvalue
of AHA equals its `2 norm. And according to the linearity
and triangle inequality of matrix norm [49], we have

ei
(
AHA

)

=
∥∥∥F̃HŨT ŨF̃ + λ1(W − I)

H
(W − I)

∥∥∥
2

≤
∥∥∥F̃HŨT ŨF̃

∥∥∥
2

+ λ1

∥∥∥(W − I)
H

(W − I)
∥∥∥
2
.

(40)
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As F̃ is also a unitary matrix, the same as the proof in the pre-
vious subsection, we can easily derive that

∥∥∥F̃HŨT ŨF̃
∥∥∥
2

=

1. Thus, we can rewrite (40) as

ei
(
AHA

)

≤
∥∥∥F̃HŨT ŨF̃

∥∥∥
2

+ λ1

∥∥∥(W − I)
H

(W − I)
∥∥∥
2

= 1 + λ1

∥∥∥(W − I)
H

(W − I)
∥∥∥
2
.

(41)

Indeed, once the kernels have been estimated using ACS, the
matrix W is determined, which indicates that the maximum
eigenvalue of AHA can be obtained. However, the compu-
tation of the system matrix’s `2 norm poses as a challenging
task due to the huge dimensionality of the matrix, for example,
as for an 8-coil 256 × 256 image, the size of W reaches
524288× 524288. Therefore, we further relax bound so as to
calculate it efficiently.

Let D = W − I, that is

D=




D1,1 D1,2 · · · D1,J

D2,1 D2,2 · · · D2,J

...
...

. . .
...

DJ,1 DJ,2 · · · DJ,J


 with Di,j=

{
Wi,j−I, i = j,

Wi,j , i 6= j.

(42)
And denote Z = (W − I)

H
(W − I), we have

Z =




Z1,1 Z1,2 · · · Z1,J

Z2,1 Z2,2 · · · Z2,J

...
...

. . .
...

ZJ,1 ZJ,2 · · · ZJ,J


 with Zi,j =

J∑
m=1

DH
m,iDm,j (43)

and each Zi,j is a diagonal matrix. Then we can express Z as
a superposition of block matrices:

Z =




Z1,1

. . .
ZJ,J




︸ ︷︷ ︸
Zdiag,0

+




Z1,2

. . .
ZJ−1,J




︸ ︷︷ ︸
Zdiag,1

+ · · ·+




Z1,J




︸ ︷︷ ︸
Zdiag,J−1

+




Z2,1

. . .
ZJ,J−1




︸ ︷︷ ︸
Zdiag,−1

+ · · ·+




ZJ,1




︸ ︷︷ ︸
Zdiag,−(J−1)

(44)

Let Zdiag,i denotes the i-block matrix. We can rewrite Eq.
(44) as:

Z =

J−1∑

i=−(J−1)
Zdiag,i. (45)

Then,

‖Z‖2 =

∥∥∥∥∥∥

J−1∑

i=−(J−1)
Zdiag,i

∥∥∥∥∥∥
2

. (46)

We want to point out that

‖Zdiag,i + Zdiag,−i‖2 = ‖Zdiag,i‖2, i = 1, · · · , z, (47)

where z denotes the biggest integer no more than J/2. Detailed
proof of Eq. (47) can be found in Supplementary Material.
With the help of Eq. (47), we can rewrite the Eq. (46) as:

‖Z‖2 =

∥∥∥∥∥∥

J−1∑

i=−(J+1)

Zdiag,i

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥

z∑

i=−z
Zdiag,i+

J−1∑

i=z+1

(
Zdiag,i+Zdiag,−i

)
∥∥∥∥∥∥
2

≤
z∑

i=−z

∥∥Zdiag,i
∥∥
2
+

J−1∑

i=z+1

∥∥Zdiag,i + Zdiag,−i
∥∥
2

=

z∑

i=−z

∥∥Zdiag,i
∥∥
2
+

J−1∑

i=z+1

∥∥Zdiag,i
∥∥
2
.

(48)

Therefore, the maximum eigenvalue of the system matrix
can be estimated by:

ei

(
AHA

)

≤
∥∥∥F̃HŨT ŨF̃

∥∥∥
2
+ λ1

∥∥∥(W − I)H (W − I)
∥∥∥
2

=1 + λ1

∥∥∥(W − I)H (W − I)
∥∥∥
2

≤
z∑

i=−z

∥∥Zdiag,i
∥∥
2
+

J−1∑

i=z+1

∥∥Zdiag,i
∥∥
2
.

(49)

Let c =
z∑

i=−z
‖Zdiag,i‖2 +

J−1∑
i=z+1

‖Zdiag,i‖2, we have

L (γ) = max
i

{
1

γ
,
∣∣∣ei
(
AHA

)∣∣∣
}

=
1

γ
, 0 < γ ≤ 1

c
,

L (γ) = max
i

{
1

γ
,
∣∣∣ei
(
AHA

)∣∣∣
}

= c, γ >
1

c
.

(50)

The Eq. (50) means that, when 0 < γ ≤ 1/c, one has
L (γ) = 1/γ, which satisfies the convergence condition of
pFISTA; whereas when γ > 1/c, then L (γ) = c > 1/γ, which
does not satisfy the convergence condition of pFISTA. In
summary, when 0 < γ ≤ 1/c, pFISTA-SPIRiT is guaranteed
to converge.

Fig. 3. Experimental dataset. (a-c) Three different brain images; (d) the
Cartesian sampling pattern of sampling rate 0.34.
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TABLE I
DETAILED MRI SCANNING PARAMETERS FOR THE DATA USED IN THIS WORK.

Data Scanner Sequence Number of coils Matrix size TR/TE (ms) FOV (mm2) Slice thickness (mm)

Fig. 3 (a) 1.5T Philips T1-weighted fast-field-echo 8 256*256 1700/390 230*230 5
Fig. 3 (b) 3T GE T1- weighted SPGR 12 256*256 400/9 240*240 6
Fig. 3 (c) 3T Siemens T2-weighted turbo spin echo 32 256*256 6100/99 220*220 3

Fig. 4. Reconstructions of three different brain images by pFISTA-SENSE with different step size γ. (a-c) are the RLNEs of pFISTA-SENSE using 8, 12
and 32-coil data shown in Fig. 3, respectively. (d-f) are the function values of pFISTA-SENSE using 8, 12 and 32-coil data shown in Fig. 3, respectively. (g)
is the reconstructions of pFISTA-SENSE at different iteration in 32-coil data. All experiments used the same sampling pattern depicted in Fig. 3.

V. EXPERIMENTAL RESULTS

In this section, we first conducted experiments on multi-
coils MRI brain images to assess the feasibility of the conver-
gence criteria we derived. Then, we assess the gap between
the proved sufficient condition and the hand-tuned optimal
parameter and find that this gap leads to no distinct difference

of convergence speeds between the sufficient condition and the
hand-tuned optimal parameter. Besides, we made comparisons
with approaches that allow the computation of the step size
γ, such as backtracking and power iteration. Furthermore,
we compared the reconstructions of pFISTA-parallel and
other widely adopted algorithms - ADMM [25] and NLCG
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Fig. 5. Reconstructions of three different brain images by pFISTA-SPIRiT with different step size γ. (a-c) are the RLNEs of pFISTA-SPIRiT using 8, 12
and 32-coil data shown in Fig. 3, respectively. (d-f) are the function values of pFISTA-SPIRiT using 8, 12 and 32-coil data shown in Fig. 3, respectively. (g)
is the reconstructions of pFISTA-SPIRiT at different iteration in 12-coil data. All experiments used the same sampling pattern depicted in Fig. 3.

[3]. The ADMM and NLCG software to solve SENSE and
SPIRiT analysis reconstruction models were implemented by
ourselves. Besides, comparisons with other FISTA algorithms
were made, including MFISTA-FGP [43] and MFISTA-VA
[44]. The codes of MFISTA-FGP and MFISTA-VA are shared
on-line by Dr. Marcelo Zibetti [50]. Last, we discussed the
convergence and results under other tight frames with different
γ.

We adopted the objective-functional-based criteria F (x(k))
to assess the convergence of algorithms. Here F is the
algorithm’s function value, x(k) is the solution of kth iter-
ation. The function value of pFISTA is F (x) = λ‖x‖1 +
1
2 ‖y −AΨ∗x‖22 + 1

2γ ‖(I−ΨΨ∗) x‖22.

Besides, relative `2 norm error (RLNE) is also adopted to
quantify the reconstruction performance. The RLNE is defined
as

RLNE =
‖xref − xrec‖2
‖xref‖2

, (51)

where xref denotes the vectorized reference image that is a
square root of the sum of squares (SSOS) of the fully sampled
image and xrec the vectorized reconstructed image that is
the SSOS image of pFISTA-SPIRiT reconstructed image and
modular image of pFISTA-SENSE reconstructed image. We
should point out that a lower RLNE, a higher consistency
between the reference image and the reconstructed image.

Three multi-coil MRI datasets acquired from healthy vol-
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unteers are used in experiments. We list the detailed MRI
scanning parameters in Table I. For SENSE, the fully sampled
256 × 64 areas of the k-space center are used to calculate
sensitivity maps [51], and for SPIRiT, a fully sampled 256×22
areas for the Cartesian sampling pattern of sampling ratio
0.34 are used to estimate the convolution kernels. The shift-
invariant discrete wavelets transform (SIDWT) [7], [52], [53],
if not mentioned otherwise, is adopted as the tight frame in
experiments. In all experiments involving SIDWT, Daubechies
wavelets with 4 decomposition levels are utilized. For pFISTA-
SENSE, λ = 10−3 is set and for pFISTA-SPIRiT, we set
λ = 10−4 and λ1 = 1, and 5 × 5 SPIRiT kernel is used.
All computation procedures run on a CentOS 7 computation
server with two Intel Xeon CPUs of 3.5 GHz and 112 GB
RAM.

A. Main Results

As mentioned above, once the parameter meets the condi-
tion 0 < γ ≤ 1/c, both the pFISTA-SENSE and pFISATA-
SPIRiT converge. Thus, here we perform reconstructions by
pFISTA-SENSE and pFISTA-SPIRiT with various γ in the
recommended range, respectively, to verify if the recom-
mended γ could enable the convergence of the algorithm.

As shown in Fig. 4 (d-f), for three tested brain images,
pFISTA-SENSE converges with the γ ranged from 0.01/c
to 1/c. Moreover, the larger the γ, the faster the algorithm
converges, this observation is consistent with the Eq. (36).
Notably, the upper bound of γ is 1 (here c = 1), which,
in other words, manifests that the number of coils does not
relate to the convergence of pFISTA-SENSE. Besides, the
behavior of RLNE also indicates the same phenomenon. A
larger γ indicates a faster speed to reach the final RLNE level.
Particularly, γ = 1 enables the fastest reconstruction. Please
note that the faster the algorithm to reach the final RLNE level,
the lesser the time is needed for reconstruction.

The intermediate reconstructed images manifest the conver-
gence speeds of pFISTA-SENSE with various γ. The under-
sampling artifacts were quickly removed within 50 iterations
when with parameter γ = 1, and the algorithm produced a
promising reconstructed image (Fig. 4 (d)). As γ decreased,
the algorithm took more time to converge to a stage that
yields satisfying results. For instance, when γ = 0.01, the
convergence criterion F (x(k)) still at a relatively high level
even after 150 iterations. The program eventually took about
400 iterations to eliminate the obvious artifacts. In a word, the
convergence criteria we provided can escort pFISTA-SENSE
to achieve satisfying results of parallel imaging experiments.
Furthermore, we would recommend using γ = 1 for SENSE
reconstructions.

In addition, we observe a similar phenomenon on pFISTA-
SPIRiT experiments (Fig. 5). With 0 < γ ≤ 1/c, pFISTA-
SPIRiT empirically converges but at different ratios. The larger
the γ, the faster the algorithm converges. The fastest conver-
gence speed is achieved when γ = 1/c, thus we recommend
γ = 1/c for pFISTA-SPIRiT experiments. The intermediate
results of pFISTA-SPIRiT with monotonically decreasing γ
also reveal the increasing convergence rate as γ rises (Fig. 5.

The pFISTA-SPIRiT could be applied in multi-coils imaging
experiments with guaranteed convergence if 0 < γ ≤ 1/c.

Fig. 6. Empirical convergences of pFISTA-SENSE and pFISTA-SPIRiT with
the hand-tuned optimal and recommended γ in terms of function values. (a-c)
are the convergences of pFISTA-SENSE for the 8-coil, 12-coil, and 32-coil
data. (d-f) are the convergences of pFISTA-SPIRiT for the 8-coil, 12-coil, and
32-coil data. All experiments used the same sampling pattern depicted in Fig.
3.

B. Recommended γ and Hand-Tuned Optimal γ

One would concern about the gap between the proved
sufficient condition and the ground-truth optimal γ. Here we
swept a series of γ with a 0.1 interval for pFISTA-SENSE
and a 0.5 interval for pFISTA-SPIRiT to determine a hand-
tuned optimal γ. We take this hand-tuned optimal γ as the
ground-truth γ to discuss how much is the room lied between
the recommended γ and the ground-truth γ. Also, we discuss
the influence of the gap on the convergence speed.

In pFISTA-SENSE, the hand-tuned optimal γ = 1.3, which
is very close to the recommended γ = 1 (Figs. 6 (a-c)).
Notably, the two convergence speeds with γ = 1.3 and γ = 1
are very close. Besides, they used almost the same amount of
time to approach the final RLNE level (Figs. 7 (a-c))). Notably,
our recommended γ for SENSE is 1 being independent of the
number of coils.

In pFISTA-SPIRiT, as shown in Eq. (49), the recommended
γ depends on the number of coils. Moreover, the experimental
results shown in Figs. 6 (d-f) are consistent with the results
indicated by Eq. (49). The gap between the recommended γ
and the hand-tuned optimal γ increases as the increase of the



10

number of the coils. For example, the recommended γ is three-
times smaller than the hand-tuned optimal gamma for the 8-
coil image reconstruction. Nevertheless, the recommended γ
is about six times smaller than the hand-crafted γ when the
number of coils reaches 32. Importantly, even there exists a
six-fold gap, no distinct difference between their convergence
speeds. The hand-tuned optimal γ just spends slightly less
iterations than the recommended γ (Figs. 7 (d-f)).

Fig. 7. Empirical convergences of pFISTA-SENSE and pFISTA-SPIRiT with
the hand-tuned optimal and recommended γ in terms of RLNE. (a-c) are the
convergences of pFISTA-SENSE for the 8-coil, 12-coil, and 32-coil data. (d-f)
are the convergences of pFISTA-SPIRiT for the 8-coil, 12-coil, and 32-coil
data. All experiments used the same sampling pattern depicted in Fig. 3.

Fig. 8. The MRI reconstruction and step size computation runtime of power
iteration, backtracking, and the recommended step size for pFISTA-SENSE
(a) and pFISTA-SPIRiT (b). Note: The ”MRI reconstruction” denotes the
time spent on iterative reconstruction of an MRI image. The ”Step size
computation” is the time spent on computing γ. All experiments used the
same sampling pattern depicted in Fig. 3.

C. Compare with Other Methods to Determine γ

One of the essential components of this work is to compute
the step size, γ. It is helpful to consider backtracking and
power iteration when the Lipschitz constant is unknown or
hard to compute directly. Therefore, we conduct experiments
to evaluate the performance of the three methods of computing
γ. Among these three methods, backtracking needs to seek γ
at every iteration, whereas power iteration and the proposed
method (pFISTA-SPIRiT) only need to compute γ once before
reconstruction. Notably, the recommended sufficient condition
of pFISTA for SENSE is 1, which means there is no need to
compute γ.

For SENSE reconstruction (Fig. 8 (a)), pFISTA allows us to
save the time used to compute γ by backtracking and power
iteration. At least 100 seconds are save for the tested 8-coil
images, and the time will be longer as the number of the coils
increases. When considering the total runtime of the program
(Step size computation time + MRI reconstruction time), we
can see that the recommended γ enables pFISTA to have
more than five times faster total runtime than backtracking
and power iteration. For SPIRiT reconstructions (Fig. 8 (b)),
the computational time of γ of pFISTA is also much shorter
than that of backtracking and power iteration. As pFISTA
spends a relatively long time for reconstruction than power
iteration, pFISTA allows only slightly time acceleration over
power iteration in terms of the total runtime. However, pFISTA
permits more than 5 times faster runtime than backtracking.

D. Comparison with Other Popular Algorithms

Here we compare some popular approaches for solving
analysis models, including ADMM and NLCG. The results
show that ADMM with step size β = 0.01, NLCG and
pFISTA spend almost the same amount of time to reach
the final RLNE level (Fig. 9). Moreover, their reconstruction
images are similar yielding comparable reconstruction errors.
However, compared with pFISTA, ADMM consumes more
memory during the reconstruction. Despite NLCG has similar
convergence speed in terms of RLNE as pFISTA, the NLCG
has more than one parameter to set (for searching step size).
It is worthy to point out that, as shown in Fig. 9, the
reconstruction of the 8-coil T1-weighted brain image, the
convergence of ADMM (in terms of RLNE) is sensitive to
the parameter β selection, relatively larger or smaller β would
result in noticeable discrepancy (Figs. 9 (a-b)). Furthermore,
β = 0.01 yields the fastest convergence speed of ADMM. In
summary, pFISTA still holds advantages over these algorithms,
such as costing fewer memories, having only one parameter
to tune.

E. Comparison with Other FISTA Algorithms

Here, we carried out experiments using other variants of
FISTA for solving the analysis model, including MFISTA-FGP
[43] and MFISTA-VA [44], and the proposed approach. We
modified the system matrix of MFISTA-FGP and MFISTA-
VA to make it support SENSE and SPIRiT reconstructions.
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Fig. 9. Reconstruction results of ADMM, NLCG and pFISTA. (a) (or (b))
are convergence of three algorithms under SENSE-based (or SPIRiT-based)
reconstructions in terms of RLNE. (c-e) (or (i-k)) are reconstruction images
by ADMM (β = 0.01), NLCG and pFISTA under SENSE-based (or SPIRiT-
based) reconstruction. (f-h) and (l-n) are the reconstruction error distribution
(10×) corresponding to reconstructed image above them. Note: 8-coil image
in Fig. 3 (a) and the Cartesian sampling pattern shown in Fig. 3 (d) are adopted
in all experiments.

The results shown in Fig. 10 indicate that for both SENSE
and SPIRiT reconstructions, pFISTA enables the shortest re-
construction time compared to MFISTA-FGP and MFISTA-
VA in terms of RLNE. MFISTA-VA costs the longest time to
approach the final RLNE level (Figs. 10 (a-b)).

Furthermore, from the RLNE curves and the reconstructed
images (Fig. 10), we can see that pFISTA could offer slightly
lower RLNEs than MFISTA-FGP and MFISTA-VA, which
may enable better reconstruction images. For the SENSE
reconstruction shown in Figs. 10 (c-h), the MFISTA-FGP error
image exhibits noticeable undersampling artifacts inside the
skull while MFISTA-VA and pFISTA provide good artifacts
suppression. The difference between MFISTA-VA and pFISTA
is not so big, but we can still know that pFISTA produces
lower reconstruction error. For SPIRiT reconstructions, the
three methods offer very close RLNEs, and the reconstructed

Fig. 10. Reconstruction results of variants of FISTA and pFISTA. (a) (or
(b)) are empirical convergence of three algorithms under SENSE-based (or
SPIRiT-based) reconstructions in terms of RLNE. (c-e) (or (i-k)) are recon-
struction images by MFISTA-FGP, MFISTA-VA and pFISTA under SENSE-
based (or SPIRiT-based) reconstruction. (f-h) and (l-n) are the reconstruction
error distribution (10×) corresponding to reconstructed image above them.
Note: 8-coil image in Fig. 3 (a) and the Cartesian sampling pattern shown in
Fig. 3 (d) are adopted in all experiments.

images are almost the same.

F. Discussion on Other Tight Frames

In this section, we conduct experiments using pFISTA-
SENSE and pFISTA-SPIRiT with SIDWT and four other
tight frames, contourlet [5], [54], shearlet [55], patch-based
directional wavelets (PBDW) [10], and PBDW in SIDWT
domain (PBDWS) [56]. The experimental results demonstrate
that the selection of different tight frames will not affect
the convergence conditions and for different tight frames,
γ = 1/c still enables the fastest convergence speed in both
SENSE-based and SPIRiT-based recosntruction (in SENSE-
based reconstruction c = 1). Besides, adaptive tight frames,
such as PBDW and PBDWS, offer better reconstruction than
the pre-defined tight frames like SIDWT, contourlet, and
shearlet.
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VI. CONCLUSION

As a simple and fast algorithm to solve the sparse re-
construction model, pFISTA has been successfully extended
to solve parallel MR imaging problems, but its convergence
criterion needs to be proved to help users quickly and con-
veniently determine the only parameter - step size. Besides,
the convergence analysis of single-coil pFISTA cannot be
applied to the multi-coil pFISTA. In this work, we provide the
guaranteed convergence analysis for parallel imaging version
pFISTA to solve spare reconstruction models. More explicitly,
along with the sufficient condition, we offer recommended step
sizes for both SENSE and SPIRiT. Experimental results evince
the validity and effectiveness of the convergence criterion.
Further, the recommended step sizes provide more than five
times faster reconstruction time in most tested experiments
when comparing with the backtracking and power iteration.
This work is expected to help users quickly choose the step
size to obtain faithful results and fast convergence speed and
to promote the application of sparse reconstruction in parallel
MRI.

ACKNOWLEDGMENTS

The authors are grateful to the reviewers and editors for their
constructive comments which help improve the writing, con-
vergence analysis, and comparisons with related algorithms.
The authors appreciate the help of Yunsong Liu for revising
the manuscript. Xiaobo Qu is grateful to Prof. Chun Yuan for
hosting his visit to the University of Washington.

REFERENCES

[1] D. L. Donoho, “Compressed sensing,” IEEE Transactions on Informa-
tion Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[2] T. T. E. J. Candès, J. Romberg, “Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information,”
IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 489–509,
2006.

[3] J. M. P. M. Lustig, D. Donoho, “Sparse MRI: The application of
compressed sensing for rapid MR imaging,” Magnetic Resonance in
Medicine, vol. 58, no. 6, pp. 1182–1195, 2007.

[4] X. Qu, Di Guo, Zhong Chen, and Congbo Cai, “Compressed sensing
MRI based on nonsubsampled contourlet transform,” in 2008 IEEE
International Symposium on IT in Medicine and Education, 2008, pp.
693–696.

[5] X. Qu, W. Zhang, D. Guo, C. Cai, S. Cai, and Z. Chen, “Iterative
thresholding compressed sensing MRI based on contourlet transform,
inverse problems in science and engineering,” Inverse Problems in
Science and Engineering, vol. 18, no. 6, pp. 737–758, 2010.

[6] M. Guerquin-Kern, M. Haberlin, K. P. Pruessmann, and M. Unser,
“A fast wavelet-based reconstruction method for magnetic resonance
imaging,” IEEE Transactions on Medical Imaging, vol. 30, no. 9, pp.
1649–1660, 2011.

[7] C. A. Baker, K. King, D. Liang, and L. Ying, “Translational-invariant
dictionaries for compressed sensing in magnetic resonance imaging,”
in 2011 IEEE International Symposium on Biomedical Imaging: From
Nano to Macro, Conference Proceedings, pp. 1602–1605.

[8] S. Ravishankar and Y. Bresler, “MR image reconstruction from highly
undersampled k-space data by dictionary learning,” IEEE Transactions
on Medical Imaging, vol. 30, no. 5, pp. 1028–1041, 2011.

[9] J. Huang, S. Zhang, and D. Metaxas, “Efficient MR image reconstruction
for compressed MR imaging,” Medical Image Analysis, vol. 15, no. 5,
pp. 670–679, 2011.

[10] X. Qu, D. Guo, B. Ning, Y. Hou, Y. Lin, S. Cai, and Z. Chen, “Un-
dersampled MRI reconstruction with patch-based directional wavelets,”
Magnetic Resonance Imaging, vol. 30, no. 7, pp. 964–977, 2012.

[11] X. Qu, Y. Hou, F. Lam, D. Guo, J. Zhong, and Z. Chen, “Magnetic
resonance image reconstruction from undersampled measurements using
a patch-based nonlocal operator,” Medical Image Analysis, vol. 18, no. 6,
pp. 843–856, 2014.

[12] S. Ma, W. Yin, Y. Zhang, and A. Chakraborty, “An efficient algorithm
for compressed MR imaging using total variation and wavelets,” in 2008
IEEE Conference on Computer Vision and Pattern Recognition. IEEE,
Conference Proceedings, pp. 1–8.

[13] Z. Liang, “Spatiotemporal imaging with partially separable functions,” in
2007 4th IEEE International Symposium on Biomedical Imaging: From
Nano to Macro, 2007, pp. 988–991.

[14] K.-C. Toh and S. Yun, “An accelerated proximal gradient algorithm for
nuclear norm regularized linear least squares problems,” Pacific Journal
of Optimization, vol. 6, no. 615-640, p. 15, 2010.

[15] T. Zhang, J. M. Pauly, and I. R. Levesque, “Accelerating parameter
mapping with a locally low rank constraint,” Magnetic Resonance in
Medicine, vol. 73, no. 2, pp. 655–661, 2015.

[16] J. He, Q. Liu, A. G. Christodoulou, C. Ma, F. Lam, and Z. Liang,
“Accelerated high-dimensional MR imaging with sparse sampling using
low-rank tensors,” IEEE Transactions on Medical Imaging, vol. 35,
no. 9, pp. 2119–2129, 2016.

[17] X. Zhang, D. Guo, Y. Huang, Y. Chen, L. Wang, F. Huang, Q. Xu, and
X. Qu, “Image reconstruction with low-rankness and self-consistency
of k-space data in parallel MRI,” Medical Image Analysis, vol. 63, p.
101687, 2020.

[18] S. G. Lingala, Y. Hu, E. DiBella, and M. Jacob, “Accelerated dynamic
MRI exploiting sparsity and low-rank structure: k-t SLR,” IEEE Trans-
actions on Medical Imaging, vol. 30, no. 5, pp. 1042–1054, 2011.

[19] R. Otazo, E. Candès, and D. K. Sodickson, “Low-rank plus sparse
matrix decomposition for accelerated dynamic MRI with separation
of background and dynamic components,” Magnetic Resonance in
Medicine, vol. 73, no. 3, pp. 1125–1136, 2015.

[20] M. V. Zibetti, A. Sharafi, R. Otazo, and R. R. Regatte, “Accelerating
3D-T1ρ mapping of cartilage using compressed sensing with different
sparse and low rank models,” Magnetic Resonance in Medicine, vol. 80,
no. 4, pp. 1475–1491, 2018.

[21] C. Y. Lin and J. A. Fessler, “Efficient dynamic parallel MRI recon-
struction for the low-rank plus sparse model,” IEEE Transactions on
Computational Imaging, vol. 5, no. 1, pp. 17–26, 2018.

[22] Z. Zhan, J. Cai, D. Guo, Y. Liu, Z. Chen, and X. Qu, “Fast multiclass
dictionaries learning with geometrical directions in MRI reconstruction,”
IEEE Transactions on Biomedical Engineering, vol. 63, no. 9, pp. 1850–
1861, 2016.

[23] Z. Lai, X. Qu, Y. Liu, D. Guo, J. Ye, Z. Zhan, and Z. Chen, “Image
reconstruction of compressed sensing MRI using graph-based redundant
wavelet transform,” Medical Image Analysis, vol. 27, pp. 93–104, 2016.

[24] M. Vetterli, J. Kovaevi, and V. K. Goyal, Foundations of Signal Pro-
cessing. Cambridge University Press, 2014.

[25] Y. Liu, Z. Zhan, J.-F. Cai, D. Guo, Z. Chen, and X. Qu, “Projected
iterative soft-thresholding algorithm for tight frames in compressed
sensing magnetic resonance imaging,” IEEE Transactions on Medical
Imaging, vol. 35, no. 9, pp. 2130–2140, 2016.

[26] E. J. Candès, “The restricted isometry property and its implications for
compressed sensing,” Comptes Rendus Mathematique, vol. 346, no. 9-
10, pp. 589–592, 2008.

[27] H. Rauhut, K. Schnass, and P. Vandergheynst, “Compressed sensing
and redundant dictionaries,” IEEE Transactions on Information Theory,
vol. 54, no. 5, pp. 2210–2219, 2008.

[28] E. J. Candès, Y. C. Eldar, D. Needell, and P. Randall, “Compressed
sensing with coherent and redundant dictionaries,” Applied and Compu-
tational Harmonic Analysis, vol. 31, no. 1, pp. 59–73, 2011.

[29] S. Nam, M. Davies, M. Elad, and R. Gribonval, “The cosparse analysis
model and algorithms,” Applied and Computational Harmonic Analysis,
vol. 34, no. 1, pp. 30–56, 2013.

[30] Y. Liu, J.-F. Cai, Z. Zhan, D. Guo, J. Ye, Z. Chen, and X. Qu, “Balanced
sparse model for tight frames in compressed sensing magnetic resonance
imaging,” PloS One, vol. 10, no. 4, p. e0119584, 2015.

[31] J. A. Fessler, “Optimization methods for magnetic resonance image
reconstruction: Key models and optimization algorithms,” IEEE Signal
Processing Magazine, vol. 37, no. 1, pp. 33–40, 2020.

[32] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[33] S. Ramani and J. A. Fessler, “Parallel MR image reconstruction using
augmented Lagrangian methods,” IEEE Transactions on Medical Imag-
ing, vol. 30, no. 3, pp. 694–706, 2010.



13

[34] Y. Nesterov, “A method for unconstrained convex minimization problem
with the rate of convergence o(1/k2),” Doklady an ussr, vol. 269, pp.
543–547, 1983.

[35] ——, “Smooth minimization of non-smooth functions,” Mathematical
Programming, vol. 103, no. 1, pp. 127–152, 2005.

[36] ——, “Gradient methods for minimizing composite functions,” Mathe-
matical Programming, vol. 140, no. 1, pp. 125–161, 2013.

[37] J. Douglas and H. H. Rachford, “On the numerical solution of heat
conduction problems in two and three space variables,” Transactions of
the American Athematical Society, vol. 82, no. 2, pp. 421–439, 1956.

[38] P. L. Combettes and J. Pesquet, “A Douglas Rachford splitting approach
to nonsmooth convex variational signal recovery,” IEEE Journal of
Selected Topics in Signal Processing, vol. 1, no. 4, pp. 564–574, 2007.

[39] I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint,” Com-
munications on Pure Applied Mathematics, vol. 57, no. 11, pp. 1413–
1457, 2004.

[40] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,” SIAM Journal on Imaging Sciences,
vol. 2, no. 1, pp. 183–202, 2009.

[41] M. Yamagishi and I. Yamada, “Over-relaxation of the fast iterative
shrinkage-thresholding algorithm with variable stepsize,” Inverse Prob-
lems, vol. 27, no. 10, p. 105008, 2011.

[42] A. B. Taylor, J. M. Hendrickx, and F. Glineur, “Exact worst-case
convergence rates of the proximal gradient method for composite convex
minimization,” Journal of Optimization Theory and Applications, vol.
178, no. 2, pp. 455–476, 2018.

[43] A. Beck and M. Teboulle, “Fast gradient-based algorithms for con-
strained total variation image denoising and deblurring problems,” IEEE
Transactions on Image Processing, vol. 18, no. 11, pp. 2419–2434, 2009.

[44] M. V. W. Zibetti, E. S. Helou, R. R. Regatte, and G. T. Herman,
“Monotone fista with variable acceleration for compressed sensing
magnetic resonance imaging,” IEEE Transactions on Computational
Imaging, vol. 5, no. 1, pp. 109–119, 2018.

[45] S. T. Ting, R. Ahmad, N. Jin, J. Craft, J. Serafim da Silveira, H. Xue,
and O. P. Simonetti, “Fast implementation for compressive recovery of
highly accelerated cardiac cine MRI using the balanced sparse model,”
Magnetic Resonance in Medicine, vol. 77, no. 4, pp. 1505–1515, 2017.

[46] R. Ahmad, C. A. Bouman, G. T. Buzzard, S. Chan, S. Liu, E. T.
Reehorst, and P. Schniter, “Plug-and-play methods for magnetic res-
onance imaging: Using denoisers for image recovery,” IEEE Signal
Processing Magazine, vol. 37, no. 1, pp. 105–116, 2020.

[47] K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P. Boesiger,
“SENSE: Sensitivity encoding for fast MRI,” Magnetic Resonance in
Medicine, vol. 42, pp. 952–962, 1999.

[48] M. Lustig and J. M. Pauly, “SPIRiT: Iterative self-consistent parallel
imaging reconstruction from arbitrary k-space,” Magnetic Resonance in
Medicine, vol. 64, no. 2, pp. 457–71, 2010.

[49] C. D. Meyer, Matrix Analysis and Applied Linear Algebra. Siam, 2000,
vol. 71.

[50] M. Zibetti. (2019) Matlab codes of MFISTA-FGP and MFISTA-
VA. [Online]. Available: https://www.cai2r.net/resources/software/
cs-mri-mfista-va-matlab-code

[51] L. Ying and J. Sheng, “Joint image reconstruction and sensitivity
estimation in SENSE (JSENSE),” Magnetic Resonance in Medicine,
vol. 57, no. 6, pp. 1196–1202, 2007.

[52] R. R. Coifman and D. L. Donoho, Translation-invariant de-noising.
Springer, 1995, pp. 125–150.

[53] M. H. Kayvanrad, A. J. McLeod, J. S. Baxter, C. A. McKenzie, and
T. M. Peters, “Stationary wavelet transform for under-sampled MRI
reconstruction,” Magnetic Resonance Imaging, vol. 32, no. 10, pp. 1353–
1364, 2014.

[54] M. N. Do and M. Vetterli, “The contourlet transform: an efficient
directional multiresolution image representation,” IEEE Transactions on
Image Processing, vol. 14, no. 12, pp. 2091–2106, 2005.

[55] G. Easley, D. Labate, and W.-Q. Lim, “Sparse directional image repre-
sentations using the discrete shearlet transform,” Applied and Computa-
tional Harmonic Analysis, vol. 25, no. 1, pp. 25–46, 2008.

[56] B. Ning, X. Qu, D. Guo, C. Hu, and Z. Chen, “Magnetic resonance
image reconstruction using trained geometric directions in 2D redundant
wavelets domain and non-convex optimization,” Magnetic Resonance
Imaging, vol. 31, no. 9, pp. 1611–1622, 2013.



1

Supplementary Material of A Guaranteed
Convergence Analysis for the Projected Fast

Iterative Soft-Thresholding Algorithm in Parallel
MRI

Xinlin Zhang, Hengfa Lu, Di Guo, Lijun Bao, Feng Huang, Qin Xu, Xiaobo Qu*

In this supplement, we provide proof of Eq. (47) in the main text, and reconstructed results of pFISTA-SENSE and pFISTA-
SPIRiT under different tight frames.

S1. PROOF OF EQUATION (47)

In this section, we give the proof of Eq. (47) in the main text.

Proof. When i = 1, · · · , z, where z equals the largest integer no more than J
2 , the matrix Zdiag,i +Zdiag,−i can be converted

to diagonal matrices by elementary transforms which do not affect the `2 norm of a matrix:



Z1,i

. . .
ZJ−i+1,J

Zi,1

. . .
ZJ,J−i+1




→




Zi,1

. . .
ZJ,J−i+1

Z1,i

. . .
ZJ−i,+1J




. (S1)

Then,
‖Zdiag,i + Zdiag,−i‖2

= max
(
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)
.

(S2)

Since the Zi,j is a diagonal matrix, we have Zi,jZ
H
i,j = ZH

i,jZi,j . Therefore,

‖Zdiag,i + Zdiag,−i‖2
= max

(
ZH

1,iZ1,i, · · · ,ZH
J−i+1,JZJ−i+1,J ,Z1,iZ

H
1,i, · · · ,ZJ−i+1,JZ

H
J−i+1,J

)

= max
(
ZH

1,iZ1,i, · · · ,ZH
J−i+1,JZJ−i+1,J

)
.

(S3)

Besides, since the matrix Zi,j is a diagonal matrix, the matrix Zdiag,i can also be easily converted to a diagonal matrix by
elementary transforms. Thus, we have

‖Zdiag,i‖2 = max
(
ZH

1,iZ1,i, · · · ,ZH
J−i+1,JZJ−i+1,J

)
. (S4)

Notice that the right-hand side of Eq. (S4) and that of Eq. (S3) are the same, thus,

‖Zdiag,i + Zdiag,−i‖2 = ‖Zdiag,i‖2. (S5)
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S2. DISCUSSION ON OTHER TIGHT FRAMES

The tight frame is crucial for sparse MRI reconstruction. In this section, we conduct experiments using pFISTA-SENSE and
pFISTA-SPIRiT with SIDWT and four other tight frames, contourlet [S1], [S2], shearlet [S3], PBDW [S4], and PBDWS [S5].
By exploring the image geometry, contourlet provides a sparse expansion for images that have smooth contours [S1], and is
applied to preserve smooth edges on MRI reconstruction [S2]. Shearlet combines the ability to capture the geometric features
of data with the power of multi-scale methods and therefore provides improvements compared to the contourlet transform
[S3]. PBDW trains the geometric directions on the pixels of image patches and provides an adaptively sparse representation
for image [S4]. PBDWS extends the PBDW into the SIDWT domain to enhance the ability of sparsifying [S5]. Here, the
filters used in contourlet are ladder structure filters, and the decomposition levels are [5, 4, 4, 3], the filters used in shearlet are
Meyer filters [S6], and the decomposition level used in shearlet is 2, and the filters used in PBDW and PBDWS are the Haar
wavelets and the decomposition level is 3.

The experimental results in Fig. S1 confirm our argument that the recommended sufficient condition γ = 1/c enables the
fastest convergence speed in both SENSE-based and SPIRiT reconstructions. Both the RLNE and cost function curves show
that γ = 1/c allows the fastest convergence speed. This result indicates that the sufficient condition is robust to different tight
frames, permitting flexibility in applying the sufficient conditions in practical scenarios. Besides, the reconstructed images in
Fig. S2 show that PBDW and PBDWS provide much better reconstructions than the rest of the tight frames in terms of lower
reconstruction errors and artifacts suppression. The results are reasonable since PBDW and PBDWS are tight frames trained
using a pre-reconstructed image, which will offer a sparser representation of the image.

Since the sampling rate of 0.25 is relatively low for the Cartesian sampling pattern, the reconstructed images are somewhat
blurred and appear artifacts in Fig. S2. Therefore, we conducted experiments at a higher sampling rate of 0.34, and the results
are presented in Fig. S3 and S4. As can be seen, when the sampled data are relatively adequate, RLNEs drop to a much
lower level (Fig. S3). Notably, the results indicate the effectiveness of the proven convergence criteria. The shearlet, PBDW,
and PBDWS permit nice reconstructed images with excellent artifacts suppression. In contrast, contourlet produces images
appearing slightly blur (Fig. S4).

Fig. S1. Empirical convergence using five tight frames under a sampling rate of 0.25. (a-e) (or (f-j)) are the RLNEs of pFISTA-SENSE (or pFISTA-SPIRiT)
with different γ using SIDWT, contourlet, shearlet, PBDW, and PBDWS, respectively; and (k-o) (or (p-t)) are the objective function values of pFISTA-SENSE
(or pFISTA-SPIRiT) with different γ using SIDWT, contourlet, shearlet, PBDW, and PBDWS, respectively. Note: 8-coil image in Fig. 3 (a) and the Cartesian
sampling pattern with sampling rate of 0.25 are adopted in all experiments.
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Fig. S2. Reconstruction results of SIDWT and other four tight frames under a sampling rate of 0.25. (a) is the fully sampled image; (b-f) (or (m-q)) are
images of reconstruction results of pFISTA-SENSE with γ = 1 (or pFISTA-SPIRiT with γ = 1/c) using SIDWT, contourlet, shearlet, PBDW, and PBDWS,
respectively; (g) is 1D Cartesian sampling pattern with a sampling rate of 0.25 and 14 ACS lines acquired ; (h-l) (or (r-v)) are the reconstruction error
distributions (3×) corresponding to the reconstructed images above them.
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Fig. S3. Empirical convergence using four other tight frames under a sampling rate of 0.34. (a-d) (or (e-h)) are the RLNEs of pFISTA-SENSE (or pFISTA-
SPIRiT) with different γ using contourlet, shearlet, PBDW, and PBDWS, respectively; and (i-l) (or (m-p)) are the function values of pFISTA-SENSE (or
pFISTA-SPIRiT) with different γ using contourlet, shearlet, PBDW, and PBDWS, respectively. Note: 8-coil image in Fig. 3 (a) in the main text and sampling
pattern in Fig. 3 (d) in the main text are adopted in all experiments.
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Fig. S4. Reconstruction results of four tight frames under a sampling rate of 0.34. (a-d) (or (i-l)) are images of reconstruction results of pFISTA-SENSE
with γ = 1 (or pFISTA-SPIRiT with γ = 1/c) using contourlet, shearlet, PBDW, and PBDWS, respectively; (e-h) and (m-p) are the reconstruction error
distribution (3x) corresponding to reconstructed image above them. Note: 8-coil image in Fig. 3 (a) in the main text and sampling pattern in Fig. 3 (d) in the
main text are adopted in all experiments.
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