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Nuclear magnetic resonance (NMR) spectroscopy 
serves as an indispensable tool in chemistry and 
biology but often suffers from long experimental 
time. We present a proof-of-concept of harnessing 
deep learning and neural network for high-quality, 
reliable, and very fast NMR spectra reconstruction 
from limited experimental data. We show that the 
neural network training can be achieved using 
solely synthetic NMR signal, which lifts the 
prohibiting demand for large volume of realistic 
training data usually required in the deep learning 
approach. 

Nuclear magnetic resonance (NMR) spectroscopy is an 
invaluable biophysical tool in modern chemistry and life 
sciences. Examples include characterization of complex protein 
structures1, 2 and studies disordered3 and short-lived molecular 
systems4. However, duration of NMR experiments increase 
rapidly with spectral resolution and dimensionality5. Thus, a 
typical multidimensional protein experiment requires several 
hours or even weeks6. This often imposes unbearable 
limitations due to low sample stability and/or excessive costs 
of NMR measurement time. Thus, accelerating data acquisition 
is a fundamental problem in modern NMR spectroscopy. 

To accelerate the data acquisition, in the Non-Uniform 
Sampling (NUS) acquisition approach, a small fraction of 
traditional NMR measurements, usually called free induction 
decay (FID), is augmented with a computational model to 
reconstruct high quality spectra5, 7-12. To achieve good spectra 
reconstructions, prior knowledge must be incorporated in order 
to compensate for missing information introduced by the NUS 
scheme. Representative methods include the maximum 
entropy6, spectrum sparsity in compressed sensing9, 10, 13, 
spectral line-shape estimation in SMILE14, tensor structures in 
MDD5 or Hankel tensors11, and exponential nature of NMR 
signal in low rank7. Spectra are reconstructed very well using 
these approaches. Although these approaches vary in prior 
knowledge or implementations, they all share a key character: 
Iterative and computationally demanding reconstruction 
process that takes much time. 

Motivated by the exciting achievements of deep learning 
(DL)15, a representative artificial intelligence approach using 
neural networks, we will explore the end-to-end mapping with 
DL for the NMR spectra reconstruction, enabling fast and high-
quality reconstructions. In contrast to the traditional methods 
that take advantage of one or more predefined priors for 
reconstruction, for instance, sparsity and low rank, the 
proposed DL approach mines the underlying information 
embedded in data and thus does not require any predefined 
priors. 

A critical challenge of the DL is that it requires an enormous 
amount of realistic experimental data at the training stage. 
Whilst obtaining of such a gigantic data set is practically 
impossible due to the NMR sample and instrument time 
limitations, our work demonstrates that successful training of 
the neural network in the DL is possible using solely synthetic 
data. These are generated using the classic assumption that 
NMR FID is a superposition of small number of exponential 
functions6, 7. The strategy of using synthetic data for training is 
beyond the traditional DL approach that requires huge volume 
of practical data. This work suggests a way for bridging the 
traditional signal modeling to DL and for enabling smart 
artificial intelligence computational tools in applications that 
lack enough practical data to train the neural network. This 
work can be treated as a proof-of-concept for DL NMR 
spectroscopy. 

Reconstructing a spectrum from NUS data is equivalent to 
mapping of the input undersampled FID signal to the target 
spectrum. In the DL NMR, a neural network is trained to 
perform the mapping as shown in Figure 1. First, the spectrum 
artifacts introduced by NUS are removed with dense 
convolutional neural network (CNN) and then intermediately 
reconstructed spectra are further refined to maintain the data 
consistency to the sampled signal. Artifacts are gradually 
removed as the stage of reconstruction increases and the final 
spectrum is produced after several stages. In this 
implementation, dense CNN is chosen because it ensures 
maximum information flow between layers in the neural 
network16 while data consistency constraint the reconstruction 



subjecting to the sampled data points17, 18. 

 
Figure 1. Flowchart of deep learning NMR spectroscopy. Note: Please refer to Supplement S1 for more details. 

 
Figure 2. Reconstruction of a 2D 1H–15N HSQC spectrum of the cytosolic domain of CD79b protein from the B-cell receptor. (a) and (b) are the fully 
sampled spectrum and deep learning NMR reconstruction from 25% NUS data, respectively. (c) Peak intensity correlations between fully sampled 
spectrum and reconstructed spectrum. (d) denotes the peak intensity correlation obtained with the deep learning and low rank methods under different 
NUS levels. (e) and (f) are zoomed out 1D 15N traces of (a). Red and green lines represent the reference and the reconstructed spectra, respectively. 
Note: The R2 denotes the square of Pearson correlation coefficient. The closer the value of R2 gets to 1, the stronger the correlation between the 
reference and the reconstructed spectra is. The average and standard deviations of correlations in (d) are computed over 100 NUS trials. 

 
The key issue for DL NMR is to learn the mapping. We used 

computer to generate the fully-sampled time domain NMR 
signal, from which undersampled NUS signal was obtained 
using Poisson gap sampling scheme (See Supplement S1.1.2 
for more details). Given the synthetic NUS signal 𝒚 and the 
corresponding target spectrum 𝒔  produced from the fully 
sampled time domain data, a large number of pairs ሺ𝒚௞, 𝒔௞ሻ 
(k=1, 2, …, K) are fed into the neural network to learn the best 
network parameters 𝜽 that minimizes the least errors 𝑒ሺ𝜽ሻ ൌ∑ ሺ𝒇ሺ𝒚𝒌, 𝜽ሻ െ 𝒔𝒌ሻ𝟐𝑲𝒌ୀ𝟏  . Therefore, DL provides an optimal 
mapping 𝒇ሺ𝒚, 𝜽ሻ from the input 𝒚 to the target spectrum in 
the sense of least square error for all pairs. Then, for a given 
undersampled FID 𝒚෥ from a NUS experiment, a spectrum 𝒔෤ 
is obtained via 𝒔෤ ൌ 𝒇ሺ𝒚෥, 𝜽ሻ. 

To demonstrate the applicability of the DL NMR, we validate 
the reconstruction performance on several protein spectra. As 
shown in Figure 2, DL reconstructs excellent 2D 1H-15N HSQC 
spectrum from 25% NUS data with correlation of the peak 
intensity to the fully sampled spectrum reaching 0.9996. Figure 

2d indicates that DL is in pair with the state-of-the-art 
reconstruction techniques7 in robustness and spectra quality 
and may even surpass the other methods at low NUS densities. 
High fidelity of the reconstructed peak shapes is illustrated in 
Figures 2e and 2f. Using the network with same trained 
parameters, the correlations greater than 0.98 were also 
obtained for 2D spectra of three other proteins (See Supplement 
S2.3). Figure 3 demonstrates high potential of the DL in 
reconstructing high-quality 3D HNCO spectra. The peak 
intensity correlation approaching 0.99 for this spectrum (Figure 
3e) illustrates the excellent fidelity of the DL reconstruction. 
Another good example of the DL reconstruction of a 3D 
HNCACB spectrum is found in Supplement S2.4.  

An important advantage of the DL NMR is fast spectra 
reconstruction due to harnessing of a non-iterative low-
complexity neural network algorithm that allows massive 
parallelization with graphics processing units (GPU). Without 
compromising the spectra quality (See Supplement S2.2 and 
S2.3 for detailed comparisons), DL is much faster than other 



state-of-the-art methods such as low rank7 and compressed 
sensing10. The comparisons, shown in Figure 4, indicate that the 
computational time of spectra reconstructions in DL NMR are 
orders of magnitude shorter than times needed for the 
traditional algorithms. Although, training of the network is 
computationally demanding, it is done only once, whereas all 
the subsequent reconstructions of the experimental spectra are 
fast. 

In summary, we present the proof-of-concept demonstration 
of the DL for reconstructing high quality NMR spectra from 
NUS data. This result opens an avenue for application of DL 
and possibly other artificial intelligence techniques in 
biological NMR. Not limited to NMR, we demonstrated that 
DL can be achieved using purely synthetic training sets. Thus, 
the exponential function reconstruction may also be valuable to 
other biomedical imaging tools19, 20. Another important feature 
of the DL is its inherent ability to mine underlying properties of 
the signal, which may give the DL NMR the upper hand in 
crucial applications, where it is hard to define a good model for 
the signal of interest. 

 
Figure 3. The sub-region of projections on 1H-15N and 1H-13C planes of 
3D HNCO spectrum of Azurin 14 kDa protein. (a) and (c) are the 
projections from the fully sampled spectrum. (b) and (d) projections from 
the deep Learning reconstruction from 5% NUS data. (e) peak intensity 
correlation between deep learning reconstructed and fully sampled 3D 
spectrum. 

 
Figure 4. Computational time for the spectra reconstruction with deep 
learning, low rank and compressed sensing. Experiments were carried 
out in a dual CPUs (2.2 GHz, 12 cores per CPU) computer server 
equipped with 128 GB RAM and one Nvidia Tesla K40M. Deep learning, 
low rank and compressed sensing were implemented in Tensorflow 
(GPU), MATLAB (CPU) and MddNMR (CPU), respectively. Both low 
rank and compressed sensing algorithms were accelerated with CPU-
based parallel computing in 24 threads. The indirect dimensions of 
tested 2D spectrum has 256 points while its direct dimension is 116 
points. The indirect dimensions of the 3D spectra are 60x60 points, and 
its direct dimension has 732 points. 
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Supplement S1: Methodology 

In the following, we first illustrate the detailed architectures (Fig. S1-1) of the deep learning (DL) NMR and 

then explain each processing parts separately, following the processing of data flow.  

 

 
Figure S1-1. The detailed architectures of DL NMR. (a) The undersampled FID, (b) the spectrum with strong 

artifacts, (c) dense CNN, (d) the output of dense CNN, (e) the updated spectrum from data consistency, (f) 

fully sampled spectrum, (g) the output of the whole network. Note: The green and orange blocks denote 

signals in time and frequency domains, respectively. Signals or modules that are marked with the purple 

color are only existed in the training phase.  

 

The implementation of DL NMR includes two phases, training phase and prediction phase. In the training 

phase, with the computer-simulated undersampled FID y   to the target spectrum s  , a large number of 

FID/spectrum pairs ( )( ), 1,2, ,k k k K=y s   are input into the neural network to learn the best network 

parameters θ̂ . In the reconstruction phase, given an undersampled FID y  acquired in the NUS experiment, 

a spectrum s   is obtained via ( )ˆ= ,fs y θ   where f   is the trained mapping from undersampled FIDs to 

spectra. Both training and reconstruction phases are detailed illustrated in the following. 



 

 

1.1 Training phase 

1.1.1 Generate the fully sampled spectrum and the undersampled FID 

Our method solely uses the synthetic data as training data, which is significantly different from many deep 

learning approaches that utilize the realistic data as training data. The fully sampled spectrum satisfies =s Fx , 

where F   is the Fourier transform and x   is the fully sampled FID, and the undersampled FID obeys 

=y Ux , where U  is the undersampling operator, are generated as follows: 

The fully sampled FID x  is simulated according to the classical exponential function modeling as1-5: 

( ) 2

1

j j j

n t
J

i in t

n j

j

x A e e e
  


−



=

= ,                 (S1-1) 

where J is the number of exponentials, Aj, ∅𝑗 , τj and fj are the amplitude, phase, decay time and frequency, 

respectively, of the jth exponential. By varying these parameters according to Table S1-1, there are 40000 FIDs 

are simulated. 

For each fully sampled FID x , a corresponding under-sampling operator U  is generated following the 

Poisson-gap sampling scheme6. Let k   denote the thk   sampling trial, then multiple pairs of ( ),k ky s

( )1,2, ,k K= , composed of the undersampled FID 
ky  and the fully sampled spectrum 

ks , are formed 

and used to train the neural network. In this work, we simulate =40000K pairs. 

 

Table S1-1. Parameters for 1D synthetic FID 

Parameters Number of 

Peaks (J) 

Amplitude  

(A) 

Frequency 

(ω) 

Decay time  

(τ) 

Phase  

(∅) 

Minimum 1 0.05 0.01 10 0 

Increment 1 continuous continuous continuous continuous 

Maximum 10 1 0.99 179.2 2π 

Note: The FID is normalized so that the maximal magnitude of each spectrum is 1. 

1.1.2 Generate the initial spectrum from the undersampled FID 

The initial spectrum that inputs the neural network is computed as H T=Us F U y , where T
U is the adjoint 

operator of U  and H
F  is the forward Fourier transform. This initial spectrum is with strong artifacts since 

those unsampled FID data are filled with zeros on non-acquired positions. 

Since an undersampled FID ky   corresponds to one NUS sampling kU  , thus the generated initial 

spectrum will be ( )1,2, ,
k

H T

k k k K= =
U

s F U y  and =40000K  in the implementation. 

1.1.3 Reduce spectrum artifacts with dense neural network 

The spectrum 
U

s  is fed into the densely connected convolutional neural networks (Fig.S1-1(c)), known 

as dense CNN 6. This neural network learns a map 
CNNf  to reduce the spectrum artifact and yield the ‘clean’ 

spectrum denoted as ˆ
CNNs . 

The structures of dense CNN (Fig. S1-1(c)) include 8 convolutional layers. Between adjacent layers of 

dense CNN, there exists the batch normalization followed by the ReLU activation function. With the initial 

spectrum as input, first convolutional layer produces 16 spectra while the rest of convolutional layers each 

output 12 spectra except for the last layer which provides only one spectrum - the spectrum ˆ
CNNs . The 

( )th 2 8l l   layer takes outputs of preceding ( )
th

-1l  layers, i.e., ( )16+12 -2l  spectra. 



 

 

1.1.4 Enforce the spectrum to maintain data consistency 

A data consistency module is incorporated to ensure reconstructed spectra are aligned to acquired data. 

Given the output of dense CNN ˆ
CNNs , the spectrum is modified as 

 22
ˆ ˆarg min

DC

T

DC DC CNN DC= − + −
s

s s s y UF s ,              (S1-2) 

where   denotes the norm of a vector, T
F  the inverse Fourier transform, 

DCs  the underlying spectrum 

to be optimized, and ˆ
DCs is the output of data consistency module. A closed form solution of Eq. (S1-2) is 

( ) ( )
1

ˆ ˆT T T

DC CNN 
−

= + +s F U U 1 U y F s ,                 (S1-3) 

where 1  is an identity matrix and ( )
1−

  denotes the inverse of a matrix. Let the FID of ˆ
gs  be ˆˆ T

g g=x F s , 

then Eq. (S1-3) is equivalent to the following relationship 
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
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
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Fs

x Fs y  ,                 (S1-4) 

where   is the set of positions for sampled FID and n  is the index of the FID. The Eq. (S1-4) implies 

that the FID at the location of sampled data points should be balanced between the acquired data points in 

the initial data y  and the predicted data point obtained with the dense CNN. 

  For simplicity, we rename the data consistency as a linear function 

( )ˆ ˆ ,DC DC CNNf=s s y ,                         (S1-5) 

that maps the input ( )ˆ ,CNNs y  to the spectrum according to Eq. (S1-3). In our implementation, we choose 

610 =  which works well for all the tested spectra.  

In this implementation, the two modules described in S1.1.3 and S1.1.4 are combined as one 

reconstruction stage. As shown in Fig. S1-2, spectrum artifacts (Fig. S1-2(b)) are firstly removed by the 

dense CNN (Fig. S1-2(c)) in some degree and then the spectrum (Fig. S1-(d)) quality is enhanced by 

enforcing the data consistency. Further improvement of spectra (Figs. S2-(d)(f)(h)(j)(l)) are retained by 

repeating reconstruction stage in multiple times. 



 

 

 

Figure S1-2. The illustrative results of dense CNN and data consistency. Note: Conv, DC, and the number 

(1, 2, 3, 4, 5) denote the outputs of dense CNN and data consistency, and the order of reconstruction stage, 

respectively. The final output of the network is (l) DC-5. 

1.1.5 Loss function and trained optimal parameters 

Let the superscript number q  denotes the 
thq  reconstruction stage, then the output at the 

thq  stage is 

the same as the output of the data consistency module, meaning that ˆ ˆq q

DC=s s . The overall loss function in 

our implementation is 

 
( )

1 , , 1 1

ˆmin
q Q

QK
q q

k k

k q  


= = =

−
θ

s s ,                                  (S1-6) 

where θ   is network parameters to be trained, k   denotes the kth NUS trial, which is also equal to the 

number of FIDs. In the implementation, ADAM scheme is adopted to solve Eq. (S1-5)7. Therefore, the 

optimal parameters θ̂  is obtained by minimizing the output of the network for all training data. 

1.2 Reconstruction phase 

In the reconstruction phase, given an undersampled FID y  acquired in the NUS experiment, a spectrum 

s  is reconstructed according to 

( )ˆ= ,fs y θ ,                                  (S1-7) 

where f  is the functions that models the whole processing in the neural network.  

One thing should be mentioned is that the feedback connection (purple line in Fig. S1-1) is discarded in 

the reconstruction since the fully sampled FID is not available in practice.   



 

 

Supplement S2: Other Spectra Results  

In the following, all non-uniform sampling tables are generated according to Poisson-gap sampling8. 

The proposed deep learning (DL) approach will be compared with two state-of-the-art NMR spectroscopy 

reconstruction approaches, including low rank (LR)2 and compressed sensing (CS)9-11. In reconstruction of 

2D NMR, CS10 is excluded since the LR2 has been shown to outperform the CS. Thus, comparing deep 

learning (DL) with LR is enough to demonstrate the advantage of DL. In the reconstruction of 3D NMR, 

CS10 is included but LR2 is excluded because the former can handle the realistic 3D NMR data while the 

latter cannot accomplish this yet.  

2.1 Experiments Setup 

The important spectra parameters, including four 2D spectra and two 3D spectra, are listed in Table S2-1. 

More details could be found in below experimental descriptions (S2.1.1 and S2.1.2). The direct dimension 

of all spectra was processed in NMRPipe12 before performing reconstructions. 

Table S2-1. Important parameters of used spectra. 

 Type Protein name 
Protein 

size 

Spectrometer 

frequency 

Size(s) of 

indirect 

dimension(s) 

References 

2D 

spectra 

HSQC Cytosolic CD79b ~5.7 kDa 800 MHz 256 Figure S2-1 

HSQC Ubiquitin ~8.6 kDa 800 MHz 98 Figure S2-3 

HSQC Gb1 ~6.3 kDa 600 MHz 150 Figure S2-4 

TROSY Ubiquitin ~8.6 kDa 800 MHz 128 Figure S2-5 

3D 

spectra 

HNCO Azurin 14 kDa 800 MHz 6060 Figure S2-7 

HNCACB GB1-HttNTQ7 2.7 kDa 700 MHz 9044 Figure S2-9 

 

2.1.1 2D Spectra 

We used the same 2D 1H–15N HSQC spectrum (Fig. S2-1) of cytosolic CD79b protein as was described 

in our previous work2, 13. In brief, the spectrum was acquired for 300 μM 15N-13C labeled sample of cytosolic 

CD79b in 20 mM sodium phosphate buffer, pH 6.7 at 25 °C on 800 MHz Bruker AVANCE III HD 

spectrometer equipped with 3 mm TCI cryoprobe. 

The 2D 1H–15N HSQC spectrum (Fig. S2-3) was acquired from ubiquitin sample at 298.2K temperature 

on an 800 MHz Bruker spectrometer. Data were recorded with 8 transients and the recycle delay of 1 s. 

The 2D 1H–15N HSQC spectra (Fig. S2-4) of GB1 was the data courtesy of Drs. Luke Arbogast and Frank 

Delaglio at National Institute of Standards and Technology, Institute for Bioscience and Biotechnology 

Research, USA. The sample was 2 mM U-15N, 20%-13C GB1 in 25 mM PO4, pH 7.0 with 150 mM NaCl 

and 5% D2O. Data was collected using a phase-cycle selected HSQC at 298 K on a Bruker Advance 600 

MHz spectrometer using a room temp HCN TXI probe, equipped with a z-axis gradient system. 

The 2D 1H–15N best-TROSY spectrum (Fig. S2-5) of ubiquitin was acquired at 298.2K temperature on an 

800 MHz Bruker spectrometer. The spectrum was recorded with 2 transients, the recycle delay of 0.2s. 

2.1.2 3D Spectra 



 

 

The 3D HNCO spectrum obtained from the 800 MHz spectrometer on 15N-13C-labeled Cu(I) azurin sample 

was described earlier14. 

The 3D HNCACB spectrum (Fig. S2-9) was the data courtesy of Drs. Marius Clore and Samuel Kotler at 

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National 

Institutes of Health, Bethesda, MD 20892-0520. The data was recorded at 298 K on a Bruker Advance HD 

700 MHz spectrometer using a cryogenic TCI probe, equipped with a triple-axis gradient accessory, and was 

described in previous paper15. 

2.2 Reconstructed 2D HSQC Spectrum of CD79b 

Details about the spectrum could be found in Table S2-1. The deep learning method, DL NMR, is 

compared with a representative NUS NMR reconstruction method, the LR approach2.  

The DL NMR achieves the same level of reconstructed spectra quality as LR method does (at the NUS 

rate of 25% in Fig. S2-1). The peak intensity correlation values of both methods approaching 0.9999 and 

representative peak shapes closing to the fully sampled peak shapes can demonstrate this (Figs. S2-1(d)-(g)). 

At the lower the NUS levels (10% and 15% in Fig. 2(d)), the DL NMR provides higher correlation values 

as well as lower dispersion of correlation coefficients over 100 NUS trials. The higher quality of the DL 

NMR reconstruction at low NUS rate is also illustrated in Figs. S2-2(a) and 2(b). These observations imply 

that DL allows more significant saving of measurement time than the LR method, and also is more robust 

under different NUS trials, leading to more stable reconstruction. 

 

Figure S2-1. Reconstruction of a 2D 1H–15N HSQC spectrum of cytosolic CD79b protein from the B-cell 

receptor. (a)-(c) are the fully sampled spectra, LR and DL reconstructions from 25% NUS data, respectively; 

(d) and (e) are peak intensity correlations obtained by LR and DL methods, respectively; (d) and (e) are 

zoomed out 1D 15N traces, and the red, yellow and green lines represent the spectra obtained with fully-

sampling, LR and DL methods, respectively. Note: 25% NUS data were used in the reconstruction. 



 

 

 

Figure S2-2. Reconstructed 2D 1H-15N HSQC spectra under different amounts of NUS data. (a)-(d) are the 

reconstructions at NUS of 10%, 15%, 20% and 25%, respectively. The spectra marked with green and yellow 

colors are reconstructions with DL and LR methods, respectively. 

 

2.3 Other 2D Spectra Reconstruction 

To demonstrate the applicability of trained neural networks, we reconstruct another three spectra, 

including the 2D HSQC spectrum from ubiquitin (Fig. S2-3), the 2D HSQC spectrum from GB1 (Fig. S2-4) 

and the 2D TROSY spectrum from ubiquitin (Fig. S2-5), details about spectra could be found in Table S2-1.  

Both DL and LR methods obtain very high peak intensity correlation (>0.98), which is also confirmed 



 

 

with almost the same peak shapes to the fully sampled spectra (at the NUS rate of 25%). With fewer data, 

indicating higher acceleration factors of data acquisition, Fig. S2-6 shows that DL outperforms LR in terms 

of higher intensity correlations. 

 

 

Figure S2-3. Reconstruction of the 2D 1H-15N HSQC spectrum of ubiquitin. (a) is the fully sampled reference 

spectrum, (b) and (c) are reconstructed spectra from 25% NUS data by LR and DL methods, respectively, (d) 

and (e) are the peak intensity correlations achieved by LR and DL methods, respectively, (f) and (g) are zoomed 

out 1D 15N traces, and the red, yellow and green lines represent the reference, LR and DL reconstructed 

spectra, respectively. 



 

 

 

Figure S2-4. Reconstruction of 2D HSQC spectra of GB1. (a) is the fully sampled reference spectrum, (b) 

and (c) are reconstructed spectra from 25% NUS data by LR and DL methods, respectively, (d) and (e) are 

the peak intensity correlations achieved by LR and DL methods, respectively, (f) and (g) are zoomed out 1D 
15N traces, and the red, yellow and green lines represent the reference, LR and DL reconstructed spectra, 

respectively. 



 

 

 
Figure S2-5. Reconstruction of the 2D 1H-15N best-TROSY spectrum of ubiquitin. (a) is the fully sampled 

reference spectrum, (b) and (c) are reconstructed spectra from 25% NUS data by LR and deep NMR, respectively, 

(d) and (e) are the peak intensity correlations achieved by LR and DL methods, respectively, (f) and (g) are 

zoomed out 1D 15N traces, and the red, yellow and green lines represent the reference, LR and DL NMR 

reconstructed spectra, respectively. 

 



 

 

 

Figure S2-6. Correlation coefficients for the (a) Fig. S2-3, (b) Fig. S2-4 and (c) Fig. S2-5 spectra at different rates 

of NUS. Note: The green and yellow lines indicate the Pearson correlation coefficient R2 of DL and LR methods, 

each compared with the fully sampled spectrum, respectively. The error bars are the standard deviations of the 

correlations over 100 NUS resampling trials. 

2.4 3D Spectra Reconstruction 

In this section, we will demonstrate the applicability of the DL NMR method in 3D NMR reconstruction. 

The 3D spectra include HNCO and HNCACB spectra with details listed in Table S2-1. The state-of-the-art 

CS10 reconstruction method is adopted for comparison. 

As can be seen in Figs. S2-7, S2-9 and S2-10, both DL and CS approaches produces nice reconstructions 

of 3D spectra that are very closing to the fully sampled spectra. The peak intensity correlations of DL and 

CS, with R2  0.99, shows the high fidelity of reconstruction (Figs. S2-8 and S2-11). 

 

 

Figure S2-7. The projections on 1H-15N and 1H-13C planes of the 3D HNCO spectra of azurin. (a) and (d) are 

projection spectra of the fully sampled referenced spectrum. (b) and (e) are projection spectra of the CS 

reconstructed spectrum. (c) and (f) are projection spectra of the DL reconstructed spectrum. Note: 5% NUS data 

were acquired for reconstruction. The sub-region of projections marked with green dash rectangle was shown in 

Fig. 3 in the main text. 



 

 

 

Figure S2-8. Correlation coefficients between reconstructed spectra and fully sampled 3D HNCO shown in Fig. 

S2-7. (a) and (b) are the peak intensity correlations achieved by CS and DL, respectively. 

 

 

Figure S2-9. The sub-region of the projections on 1H-15N and 1H-13C planes of the 3D HNCACB. (a) and (d) are 

projection spectra of the fully sampled referenced spectrum. (b) and (e) are projection spectra of the CS 

reconstructed spectrum. (c) and (f) are projection spectra of the DL reconstructed spectrum. Note: 10% NUS data 

were acquired for reconstruction. 



 

 

 
Figure S2-10. The sub-region of the projections on 1H-15N and 1H-13C planes of the 3D HNCACB. (a) and (d) are 

projection spectra of the fully sampled referenced spectrum. (b) and (e) are projection spectra of the CS 

reconstructed spectrum. (c) and (f) are projection spectra of the DL reconstructed spectrum. Note: 10% NUS data 

were acquired for reconstruction. The sub-region of projections marked with green dash rectangle was shown in 

Figure S2-9. 

 

 
Figure S2-11. Correlation coefficients between reconstructed spectra and fully sampled 3D HNCACB shown in 

Fig. S2-10. (a) and (b) are the peak intensity correlations achieved by CS and DL, respectively. 
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