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Abstract 

Diffusion weighted imaging (DWI) is a unique examining method in tumor diagnosis, 

acute stroke evaluation. Single-shot echo planar imaging is currently conventional 

method for DWI. However, single-shot DWI suffers from image distortion, blurring 

and low spatial resolution. Although multi-shot DWI improves image resolution, it 

brings phase variations among different shots at the same time. In this paper, we 

introduce a smooth phase constraint of each shot image into multi-shot navigator-free 

DWI reconstruction by imposing the low-rankness of Hankel matrix constructed from 

the k-space data. Furthermore, we exploit the partial sum minimization of singular 

values to constrain the low-rankness of Hankel matrix. Results on brain imaging data 

show that the proposed method outperforms the state-of-the-art methods in terms of 

artifacts removal and our method potentially has the ability to reconstruct high number 

of shot of DWI.  
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1. Introduction 

Diffusion weighted magnetic resonance imaging (MRI) is a unique examining 

method noninvasively detecting the Brownian motion of water molecules in the tissues 

in biomedical imaging [1, 2]. It is widely used in tumor diagnosis, acute stroke 

evaluation and neuroscience research [3-5]. As a conventional method of diffusion 

weighted imaging (DWI) acquisition, single-shot echo-planar imaging (EPI) has the 

advantages of motion immunity and short acquisition time, but suffers from image 

distortion, blurring and low spatial resolution [6]. some methods were proposed to 

overcome the distortion in DWI, such as spatiotemporal encoding [7] and multi-shot 

EPI. 

The multi-shot interleaved EPI fully acquires the k-space data by sampling different 

segment in each shot, as shown in Figure 1. Multi-shot EPI provides higher spatial 

resolution than single-shot EPI. However, multi-shot EPI is sensitive to physiological 

motions, which will induce phase variations from shot to shot. Directly interleaving 

multi-shot data together into fully sampled k-space will lead to severe artifacts in image. 

Many methods have been proposed to correct phase variations among multiple shots 

to obtain artifact-free DWI images [8-13]. For example, some methods explore 

navigator signals to correct phase variations, assuming that the navigator signal shares 

the same phase variation with image signal in each shot. Therefore, the navigator 

signals can be adopted to estimate phase variation for image reconstruction [8, 14] or 

as auto-calibrated signals for calibration kernel estimation [9, 15]. However, these 

navigator-based methods need additional scan time to acquire these navigators and 

there may be mismatches between target images and navigators [16]. In comparison, 

mismatch is not a problem for navigator-free reconstruction methods [10-13], which 

had shown exciting performance in brain imaging. Multiplexed sensitivity encoding 

(MUSE) [10] is a typical navigator-free reconstruction method, which used two step 

sensitivity encoding (SENSE) [17] parallel imaging reconstruction. MUSE relied on 

the performance of the first step SENSE reconstruction. When the number of shots 

getting higher, the first SENSE reconstruction would not be good, which affects the 

accuracy of phase variation. The projections onto convex sets enhanced inherent 

correction of motion-induced phase errors (POCS-ICE) [11] is another typical method 

for navigator-free reconstruction, which update the phase errors through iterative 

reconstruction. 
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Shot 1 Shot 2 Shot 3

 

Figure 1. A schematic diagram of 3-shot interleaved DWI. Note: The solid lines represent the collecting 

lines in the k-space (Fourier space) of images, and the dotted lines denote the lines where signals are not 

sampled. 

 

Recently, many low-rank Hankel matrix (LRHM) completion methods have been 

exploited to reconstruct magnetic resonance images [18-22] and spectrum [23-27]. The 

low-rank Hankel matrix depends on the linear correlations among the Fourier 

coefficients, which arose from the continuous domain analogs of sparsity [20, 21, 28], 

correlations in multi-channel [29-31] , smooth phase property in spatial domain [19] or 

the spatiotemporal properties [32-34] in cardiac imaging, dynamic contrast-enhanced 

imaging, etc..  

Some researchers exploited the correlation of different shots and the LRHM 

completion methods to recover multi-shot DWI images [12, 13], and achieved 

promising reconstructions. Multi-shot sensitivity encoded diffusion data recovery using 

structured low-rank matrix completion (MUSSELS) [12] combines the multi-channel 

images by SENSE scheme and concatenates low-rank Hankel matrix constructed shot 

by shot under the assumption that the additional phase of each shot DW image is 

support limited in k-space. Low-rank modeling of local k-space neighborhood 

(LORAKS) [19] is a representative LRHM method that constrains the compact support 

of image or the smooth phase property. One LORAKS-based method was proposed for 

navigator-free EPI ghost correction [35]. The paper mentions that the method would 

effectively adapt to multi-shot EPI imaging by concatenating multi-shot and multi-

channel data without SENSE reconstruction. However, the size of constructed Hankel 

matrix would be very large as the number of channels and shots getting higher. One 

difference between the proposed method and MUSSELS is that the strategies of Hankel 

matrix construction are different even though the basic signal assumptions are similar. 

The Hankel matrix construction of the proposed method is based on the LORAKS S-

matrix while MUSSELS constructs the block Hankel matrix. Another difference is 

MUSSELS exploits the convex nuclear norm to constrain the low-rankness of block 

Hankel matrix and the proposed method utilizes the non-convex optimization followed 

by partial sum of singular values thresholding operator. A major difference between the 

proposed approach and [35] is that [35] concatenates the multi-shot and multi-channel 

LORAKS S-matrices while the proposed method concatenates the Hankel matrix of 

composed image from multi-channel images. Another difference is [35] utilizes the 
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Frobenius norm to encourage the low-rank property and the proposed method 

constrains the partial sum of singular values of Hankel matrix. 

In this work, we propose a reconstruction method for multi-shot DWI that utilizes 

the low-rank property derived from the smooth phase of each shot image. The proposed 

method imposes the low-rankness of Hankel matrix constructed from multi-shot k-

space data, and combines the sensitivity encoding strategy [17] which performs well in 

uniformly under-sampled parallel imaging. In addition, we adopt the partial singular 

value thresholding strategy to further strengthen the low-rankness constraint. 

Numerical simulation and in vivo experiments show that our approach has the capability 

to provide reconstruction with less artifacts, sharper images in accelerated DWI. 

2. Theory 

S-based LORAKS [19] constrains the smooth phase of MRI, and is powerful in MRI 

reconstruction. A complex value image ρ  can be decomposed into magnitude m  and 

phase   ρ , let je h  such that  

 = .ρ m h   (1) 

It is observed that  

 * *= , ρ h ρ h   (2) 

where superscript *  denotes complex conjugation,   the dot product. 

Assuming that h   and *
h   are slowly spatial varying or so called smooth, the 

Fourier domain of h   and *
h  would have limited support. We use a radius-R circle 

region to approximate the kernel. Applying Fourier transform on Eq.(2), and with the 

convolution theorem of Fourier transform, one can obtain the following relationship: 

 
**

= , ρ h ρ h   (3) 

where ρ  and h  are the Fourier transform of ρ   and h  , respectively     is the 

convolution symbol. Rewrite Eq. (3) into a multiplicative form: 
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where 2   is the approximated radius-R circle kernel region with 
RN   elements. 

Extracting the real and imaginary part separately from Eq.(4), we can easily deduce the 

following relationships: 
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where the subscript r   and i   represent the real and imaginary part of ρ   and h  , 

respectively. We further define four matrices , , ,r r i i   S S S S  which respectively have 

elements: 
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S ρ S ρ

S ρ S ρ
  (7) 

for 1,...,l L  , 1 2( 2 )( 2 )L N R N R     and 1,..., Rm N  .Let rh   and ih   denote the 

vectorized rh   and ih  . We can rewrite the Eq. (5) and Eq. (6) into matrix 

multiplication form: 

   ,
r rr r i i

S

i i r ri i

   

   

     
      

         

S S S Sh h
ρ h S 0

S S S Sh h
  (8) 

where 1 2N 2 2
: RN L N

S

 
   is an operator that converts a complex matrix with size 

1 2N N  into Hankel matrix. 

The annihilating relationship in Eq. (8) implies that the matrix S  potentially has 

null-space thus low-rank characteristic can be utilized in MRI image reconstruction. 

3. Methods 

3.1 Proposed method 

In multi-shot DWI acquisition, each shot of k-space data is sampled in a uniform 

manner (Figure 1). Some methods consider the DWI reconstruction as sensitivity 

encoding reconstruction by extending different shots as virtual channels. However, the 

important phase information may be inaccurately estimated, resulting in sub-optimal 

reconstruction results. In order to avoid the difficulty in phase estimation, we tend to 

reconstruct each shot image rather than directly reconstruct a combined DWI image 

from multi-shots. 

While each shot image possesses smooth phase property [11, 36] (a toy example is 

shown in Figure 2(a)), the concatenated Hankel matrix of shots would have a better 

low-rank characteristic than one shot. (Figure 2(b)). Our method is to constrain the rank 

of phase-constrained low-rank Hankel matrix (PLRHM) and it can be formulated as 

rank minimization problem: 

 1minimize rank( )  s. t.  +s i i

X Y C X η   (9) 

where 1[ ,.., ]NX x x   denotes concatenated matrices of k-space data of shots, 

1[ ,..., ,..., ]s s s k s NX x x x  , s   is an operator that converts kx   into so called S  -

matrix as described in last section,   the Fourier transform operator, 1   the 

inverse Fourier transform operator, iC   the 
thi  channel coil sensitivity map,   an 

operator that under-samples k-space data and zero-fills the non-sampled data points, 

iY  the 
thi channel sampled k-space data, η  denotes the measurement noise. 
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Figure 2. Example of smooth phase and its low rankness in the k-space. (a) a simulated 4-shot smooth 

phases, (b) the singular values of the Hankel matrix concatenated from the k-space of four shots in (a) 

according to s  in Eq. (9). 

 

Theoretical studies show that the nuclear norm is the tightest convex lower bound of 

the rank-minimum problem [37], and many methods have been proposed to solve the 

nuclear norm optimization problem. However, they may lead to sub-optimal 

performance, and some researches try to minimize the partial sum of singular values 

[38, 39]. In this paper, we exploit the partial sum of singular values to constrain low-

rankness, therefore, our proposed rank minimization model in Eq. (9) is revised as: 

 (PLRHM) 
min( , )

1 2

1

min || || ( ),
2

m nI

si i F i

i i r




 

  
X

Y C X X   (10) 

where r   is the rank of s X  , ,m n   the matrix size of s X  ,    a regularization 

parameter that balances the data consistency and low-rankness constraint. 

 

3.2 Numerical algorithm 

Here, we utilize the alternating direction method of multiplier (ADMM) [23, 25-27, 

40] to deal with the proposed model in Eq. (10). The augmented Lagrangian of Eq. 

(10) is  

 
min( , )

1 2 2

,
1

max min || || ( ) , || || ,
2 2

m nI

s si i F i F

i i r

 


 

        
X ZD

Y C X Z D X Z X ZRe   (11) 

where D  denotes the Lagrangian multiplier, ,     the inner product in the Hilbert 

space of complex matrices, Re   denotes the real part of a complex value,    the 

penalty parameter, Z   the auxiliary variable. The solution can be obtained by 

alternatively solving the sub-problems: 

 
( )min( , )

( 1) ( 1) ( ) 2
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arg min ( ) || || ,
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km n
k k k
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X

D
X Y C X X Z   (13) 

 ( 1) ( ) ( 1) ( 1)( ),k k k k
s    D D X Z   (14) 

where   is the step size and is set as 1 in each iteration. 

To minimize Eq.(12), we adopt partial singular value thresholding (PSVT) [39] 

scheme which has better performance in rank constraint. 

For fixed ( 1)k
X  and ( )k

D , ( 1)k
Z  can be solved by 

 
( )

( 1) ( 1)

,1/ ( ),
k

k k
sr 



  
D

Z X   (15) 

where ,1/ 1 1/ 2 1 1/ 2( ) ( ( )) ( )H H

r         A U V Y U V  , 1 2( ) H  A U V  is the singular 

value decomposition, 1 1( ,..., ,0,...0)rdiag      and 2 1(0,...,0, ,..., )r Ndiag     are the 

first r   and the last N r   singular values, respectively, ( ) max(| | ,0)
| |

p

x
x x p

x
    is 

soft-thresholding operator. For fixed ( )k
Z  and ( )k

D , ( 1)k
X  has a close-form solution 

as  

 
* * ** 1 1 1 * * ( ) ( )( ) ( ).

I
T T k k

s s s si i i i

i i

         X C U U C C U Y Z D   (16) 

The numerical algorithm is summarized in Algorithm 1. 

Algorithm 1 Multi-shot DWI reconstruction with PLRHM 

Input: , , , , , ,r  Y U S . 

Initialization: Z  is initialized as random matrix, 1 =D 1 , 1k  . 

Output: X . 

1: while 100k  and ( 1) ( ) 2 ( ) 2 6|| || / || || 10k k k

F F

  X X X  do 

2:  Update Z  by solving Eq.(15)  

3:  Update X  by solving Eq.(16)  

4:  Update D  by solving Eq.(14)  

5:  1k k    

6: end while 

 

3.3 Computational complexity 

The original optimal problem in Eq. (10) is solved by the alternating direction 

method of multipliers (ADMM). With variable splitting strategy, the solution can be 

obtained by iteratively solving a partial sum of singular minimization problem and a 

linear least-square problem. The least-square problem in Eq. (13) can be solved using 

conjugate gradient method in 3( )N  operations [41], where N  is the length of the 

unknown variable in the linear least-square problem. The partial sum of singular 

minimization problem in Eq. (15) can be minimized by partial sum of singular value 

thresholding operator [39] where SVD computation occupies the largest computational 
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cost in 2( )mn  [42, 43], where m  and n  are the numbers of rows and columns of 

the Hankel matrix.  

 

4. Experiments 

4.1 Numerical Simulation 

A numerical simulation was conducted to quantitatively compare the performance of 

different reconstruction methods. 4-shot DWI images were generated by multiplying 

the 256×256 Shepp-Logan phantom with simulated smooth variation phase maps as 

shown in Figure 2(a), and then the 4-shot images were multiplied with eight coil 

sensitivity maps. Fourier transformation was performed to convert the images to k-

space. And then, Gaussian noise with expectation 0    and standard deviation

0.01   was added to each k-space. 

To evaluate the performance of different reconstruction methods, we draw the error 

maps of the reconstructions according to the reference image. 

4.2 In Vivo Experiments 

The 8-shot head DWI were acquired on a Philips 3T Achieva TX MRI scanner 

(Philips Healthcare, Best, The Netherlands) equipped with an 8-channel head coil. The 

acquisition parameters were: TE/TR = 77/3000 ms, FOV = 232×232 mm2, matrix size 

= 236×232, b-value = 800 s/mm2, shot number = 8. 

The 12-shot head DWI were acquired on United Imaging 3T uMR 790 scanner 

equipped with a 24-channel head coil. The acquisition parameters were: TE/TR = 

62/3246 ms, FOV = 300×300 mm2, matrix size = 224×224, b-value = 1000 s/mm2, 

shot number = 12. 

The human study was approved by the Institutional Review Board and written 

informed consent was obtained from the participants. 

4.3 Image Reconstruction 

Our results were compared with two state-of-the-art navigator-free DWI image 

reconstruction methods, including the POCS-ICE [11] and MUSSELS [12]. POCS-ICE 

alternatively estimates phase maps of different shots and DWI image. Both MUSSELS 

and the proposed method avoid calculating the phase variations of different shots and 

try to reconstruct multi-shot images, and then combine them to a single one by a square 

root of sum of squares. All sensitivity maps were estimated from non-diffusion-

weighted data by eigenvalue based iterative self-consistent parallel imaging 

reconstruction [44]. 
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In POCS-ICE reconstructions, the algorithm and the parameters used were identical 

to the original paper. In MUSSELS reconstructions, we utilized POCS-like algorithm 

share on [45], which is a time-saving implementation. The filter size in POCS-

MUSSELS were set to 5× 5, totally 25 pixels in the filter. And in POCS-like 

implementation of MUSSELS, another parameter, the number of rank is needed to be 

set. In our experiments, we tested different rank values, and then choose the best results. 

As in PLRHM, the circle radius R is set to 2, which means the total pixels of the filter 

is 13. The regularization parameter   is set to 10. The tolerance of the simulation was 

set to 610  for simulation and 510  for in vivo data. The max iteration time is set to 

200. 

The relative 2l -norm error (RLNE) is exploited for quantitative analysis in numerical 

simulation. The RLNE is defined as 

 
2

2

|| ||

|| ||

ref rec

ref

RLNE



x x

x
  (17) 

where 
refx  is the vectorized reference image, recx  the vectorized reconstructed image. 

All reconstruction algorithms were performed using MATLAB 2018b (Mathworks 

Inc., Natick, MA) on a personal computer with 3.30 GHz dual-core CPU and 16 GB 

RAM. 

5. Results 

5.1 Numerical Simulation 

The results of simulation are shown in Figure 3. The direct reconstruction without 

any phase correction results in severe aliasing artifacts (Figure 4(e)). POCS-ICE 

removes most artifacts, but several artifacts still exist and can be seen in the image 

(Figure 4(b) and (f)). The reconstructions of POCS-MUSSELS (Figure 4(c)) and our 

method (Figure 4(d)) can recover image without obvious artifacts while there are 

smaller errors in our result which can be seen in the error maps (Figure 4(g) and (h)). 

The RLNE of POCS-ICE, POCS-MUSSELS and our method are 0.0263, 0.0334, and 

0.0230, respectively. Thus, the proposed PLRHM leads to lowest reconstruction error 

on this simulated data. 

 



 

10 

 

(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)  
Figure 3. Reconstructed images of simulated Shepp-Logan phantom. (a) Reference (b) POCS-ICE, (c) 

POCS-MUSSELS, (d) the proposed method, (e) direct reconstruction without phase correction, (f)-(h) 

error map of (b)-(d). 

 

5.2  In Vivo Experiments 

For in vivo data, there is no golden standard for error maps calculation, thus we use 

a navigator-based method image reconstruction using image-space sampling function 

(IRIS) [8] to reconstruct an image as reference. Furthermore, the reconstruction results 

of in vivo data are one of number of signal averaged. 

Figure 4 and Figure 5 show two slices reconstructions of 8-shot head DWI. Figure 

4(d) and Figure 5(d) exhibit the references reconstructed by IRIS [8]. Slight artifacts 

still remain in the reconstructions of POCS-ICE (Figure 4(a) and Figure 5(a)), as 

marked by red arrows. POCS-MUSSELS reconstructions (Figure 4 (b) and Figure 5(b)) 

show no obvious artifacts but they look dark in the center of images, as marked by 

yellow arrows. While the proposed method (Figure 4(c) and Figure 5(c)) can effectively 

reconstruct the images with minimal artifacts. The reconstruction times for three 

methods are 152s, 548s and 2813s, respectively. 
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(b)(a)

(c) (d)  
Figure 4. Reconstructions of slice 4 of 8-shot in vivo head DWI using different reconstruction methods. 

(a) POCS-ICE, (b) POCS-MUSSELS, (c) the proposed method, (d) reference reconstructed by IRIS. The 

residual artifacts are marked by the red arrow and the dark regions are marked by yellow arrows.  
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(a) (b)

(c) (d)  
Figure 5. Reconstructions of slice 9 of 8-shot in vivo head DWI using different reconstruction methods. 

(a) POCS-ICE, (b) POCS-MUSSELS, (c) the proposed method, (d) reference reconstructed by IRIS. The 

residual artifact is marked by the red arrow and the dark region is marked by yellow arrow. 

 

Figure 6 shows the reconstructions of 3 slices of 12-shot head DWI. Directly inverse 

Fourier transformation induces severe aliasing artifacts (Figure 6(a)). POCS-ICE fails 

to remove the severe aliasing artifacts (Figure 6(b)). POCS-MUSSELS removes the 

artifacts to some extent but slight artifacts still remain in the image(Figure 6(c)). While 

the proposed method can effectively reconstruct the image with minimal artifacts and 

shaper edges than POCS-MUSSELS, as shown in Figure 6(d). In this case, the shot 

number is up to 12, which is an aggressive high shot number for reconstruction. POCS-

ICE and POCS-MUSSELS have difficulty to recover the artifact-free image, while the 

proposed method has the potential to handle the case with high number of shots. The 

reconstruction times for three methods are 336s, 1024s and 8856s, respectively. 
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Slice 8 Slice 15 Slice 18

(b)

(a)

(c)

(d)

 
Figure 6. Reconstructions of 3 slices of 12-shot in vivo head DWI using different reconstruction methods. 

(a) direct reconstruction without correction, (b) POCS-ICE, (c) POCS-MUSSELS, (d) the proposed 

method.  
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6. Discussions 

6.1 Discussion on the estimated rank 

(a)

r = 15 r = 25 r = 35 r = 45 r = 55

POCS-

MUSSELS

PLRHM

(b)  
Figure 7. The reconstructions of various rank values by POCS-MUSSELS and the proposed method. (a) 

The RLNE curve, (b) The reconstructions for different rank values. 

 

The POCS-MUSSELS and the proposed method both have a parameter rank r  to 

be set. While our method is less sensitive to the preset rank than POCS-MUSSELS 

arising from the experiments we have conducted. Figure 7 (a) shows the plots of RLNEs 

of different rank r  of POCS-MUSSELS and our method on Shepp-Logan experiment. 

Both methods obtain the lowest RLNE value when the rank value is set to 35, while the 

RLNE value of our result is lower than POCS-MUSSELS. The plots show that low 

RLNE values can be obtained by choosing from a relatively wide range of rank values 

by using the proposed method. The reconstructions of various preset ranks by POCS-

MUSSELS and the proposed method are shown in Figure 7 (b). Artifacts are stronger 

when the rank values are lower or higher than 35 in POCS-MUSSELS. While in the 

proposed method, the reconstructions are less sensitive to the preset rank and no 

obviously visible artifacts in the reconstructions.  

It is still unknown how to theoretically choose an optimal rank. In practice, we 

observe that the proposed method has a good reconstruction performance within a range 

of rank values. 

For the in vivo data, the extra navigator-echo signals, which share similar extra phase 

variations caused by subject motion with image-echo signals can be obtained by 

additionally acquiring central k-space in each shot. Therefore, we constructed the 

LORAKS S-matrix by the navigator-echo signals and then plotted the distribution of 

singular values of the Hankel matrix, as shown in Figure 8. The low-rankness can be 

observed from the singular values distribution, so as the Hankel matrix constructed by 

image-echo signals due to the similar phase variations. 
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Figure 8. Singular values distribution of navigator signals. 

 

Notice that the PSVT operator only constrains the rest N r  singular values and 

keeps the previous r  singular values unchanged in each iteration. We tested the 

reconstruction performances by using various rank values for 8-shot and 12-shot head 

DWI, and the results are shown in Figure 9 and Figure 10, respectively. For 8-shot and 

12-shot DWI, the artifacts would still remain in the reconstructions where preset rank 

value is too low. When the rank is higher than 40, the reconstructions show noisier and 

slight artifacts occur which would degrade the image quality. Therefore, we would 

suggest setting the rank value between 10 to 40 for in vivo 8-shot and 12-shot data. 

r = 0 r = 1 r = 5 r = 10 r = 15 r = 20 r = 25

r = 30 r = 35 r = 40 r = 45 r = 50 r = 55 r = 60

 

Figure 9. The reconstructions by various preset rank value in 8-shot DWI. 
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r = 0 r = 1 r = 5 r = 10 r = 15 r = 20 r = 25

r = 30 r = 35 r = 40 r = 45 r = 50 r = 55 r = 60

 
Figure 10. The reconstructions by various preset rank value in 12-shot DWI. 

 

6.2 Discussion on empirical convergence 

Despite theoretical convergence of ADMM for non-convex programming in Eq. (10) 

has not been proved yet, [39] has exploited the alternating scheme to solve the non-

convex problem and have obtained promising results. We conducted extensive 

experiments and the algorithm converged finally in our experiments. Although the 

global optimal solution cannot be guaranteed, our experiments show that the 

convergence can be obtained empirically. Figure 11 (a) exhibits the empirical 

convergence of 8-shot in vivo head experiment. The difference is defined by 
2 2

1 2 2|| || / || ||n n n x x x  , corresponding to the relative difference between two iterations. 

Figure 11 (b) shows the results of representative iterations. There are no big 

improvements after 200 iterations, so we choose the max iterations to 200 in all 

experiments.  

 

(a)

Iteration = 1 Iteration = 50 Iteration = 100

Iteration = 150 Iteration = 200 Iteration = 250

(b)  

Figure 11. The empirical convergence of ADMM algorithm. (a) The difference between two iterations, 

(b) results of representative iterations. 
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7. Conclusion 

In this paper, we propose a method dubbed PLRHM to reconstruct magnetic 

resonance images in high-resolution multi-shot diffusion weighted imaging. This 

method enforces the low-rankness of Hankel matrix by exploiting the smooth phase 

property of multi-shot images. Then, we adopt the partial sum of singular values 

minimization strategy to enhance the low-rank constraint. The comparisons with the 

state-of-the-art navigator-free DWI reconstruction methods have shown that the 

advantage of PLRHM on better artifacts removal and high reconstruction quality. 

Furthermore, the proposed method has the potential to reconstruct high number of shots 

DWI image. One main disadvantage is that our method is time consuming and further 

we would like to research on reducing the reconstruction time.  
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