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Image Reconstruction with Low-rankness and
Self-consistency of k-space Data in Parallel MRI

Xinlin Zhang, Di Guo, Yiman Huang, Ying Chen, Liansheng Wang, Feng Huang, Xiaobo Qu*

Abstract—Parallel magnetic resonance imaging has served as
an effective and widely adopted technique for accelerating scans.
The advent of sparse sampling offers aggressive acceleration,
allowing flexible sampling and better reconstruction. Neverthe-
less, faithfully reconstructing the image from limited data still
poses a challenging task. Recent low-rank reconstruction methods
exhibit superiority in providing a high-quality image. However,
none of them employ the routinely acquired calibration data
for improving image quality in parallel magnetic resonance
imaging. In this work, an image reconstruction approach named
STDLR-SPIRiT was proposed to explore the simultaneous two-
directional low-rankness (STDLR) in the k-space data and to
mine the data correlation from multiple receiver coils with the
iterative self-consistent parallel imaging reconstruction (SPIRiT).
The reconstruction problem was then solved with a singular value
decomposition-free numerical algorithm. Experimental results of
phantom and brain imaging data show that the proposed method
outperforms the state-of-the-art methods in terms of suppressing
artifacts and achieving the lowest error. Moreover, the proposed
method exhibits robust reconstruction even when the auto-
calibration signals are limited in parallel imaging. Overall the
proposed method can be exploited to achieve better image quality
for accelerated parallel magnetic resonance imaging.

Index Terms—Parallel imaging, image reconstruction, low-
rank, structured Hankel matrix, SPIRiT

I. INTRODUCTION

Magnetic resonance imaging (MRI) serves as an indispens-
able tool in clinical diagnosis, but suffers from relatively long
data acquisition time [1]. To enable fast imaging, parallel
imaging and sparse sampling are two featured approaches. The
former is armed with multi coils in the equipment while the
latter breaks the Nyquist sampling barrier for sparse images.

In parallel imaging, reduced k-space data are acquired using
an array of receiver coils (Fig. 1 (a)) to accelerate data
acquisition. Each receiver coil is more sensitive to the specific
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Fig. 1. Parallel imaging and reconstruction methods. (a) Diagram of parallel
imaging; (b) SENSE; (c) auto-calibration signal; (d) SPIRiT.

area of the object near the coil, which allows acquired data to
contain more information than single-coil data do. However,
undersampling of k-space data results in aliased images, thus
reconstruction methods are required to recover missing data
for the sake of providing artifact-free images. These parallel
imaging reconstruction approaches could be categorized into
two main genres: Image domain methods which base on the
assumption that there exists a composite image and images of
coils can be obtained by multiplying composite image with
corresponding sensitivity maps (Fig. 1 (b)), such as sensitivity
encoding (SENSE) [2]. Another type is the k-space domain
method of which lies deeply on the fact that each k-space
data points of a given coil can be formulated as a linear
combination of the multi-coil signals of its neighboring k-
space points (Fig. 1 (d)), such as generalized autocalibrating
partially parallel acquisitions (GRAPPA) [3], iterative self-
consistent parallel imaging reconstruction (SPIRiT) [4] and so
on. These parallel imaging approaches achieve reliable recon-
struction and some of them have been applied to clinical MRI
scans. However, they need auto-calibration signals (ACS), as
shown in Fig. 1 (c), to estimate the coil sensitivity maps
for encoding, such as SENSE, or to estimate the kernels for
recovery of the missing k-space data, such as GRAPPA and
SPIRiT. Once the number of acquired ACS is limited, the
accuracy of estimated sensitivity maps or kernels decreases,
resulting in large reconstruction errors [5]. Therefore, how
to properly reconstruct the image under limited ACS is still
challenging.
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Fig. 2. Illustration of ALOHA. (a) Low-rankness of weighted k-space with wavelet filters; (b) the sequential image reconstruction for two directions. Note:
W= and W⊥ denote the weights in the horizontal and vertical direction.

In sparse sampling, k-space data are undersampled and then
reconstructed with prior constraints. Two common constraints
are sparsity and low-rankness. Sparsity approaches seek a
sparse representation of an image under pre-constructed [6]–
[11] or adaptive [12]–[19] basis or dictionaries. Low-rankness
methods commonly explore the linear correlations among
multiple MRI image [20] [21] [22], thus, they are primarily
suitable for dynamic or higher-dimensional imaging [23]–
[26]. With in-depth and comprehensive developments, the low-
rankness of k-space data of a single image or multiple images
can be achieved [5], [27]–[31], which has produced promis-
ing image reconstructions under more flexible undersampling
patterns, e.g. both randomly and uniformly sparse sampling.
Rather than treating the whole k-space as a column of a
matrix, these new approaches [5], [27]–[31] have transformed
the k-space into structured matrices, e.g. Hankel or Toeplitz
matrices, to mine the linear correlation.

Researchers explore the low-rankness of structured matrices
from different properties, e.g. coil sensitivities have compact
k-space support in SAKE [5], the image has limited spatial
support or slowly varying phase in LORAKS [28], [29], [32],
[33], transform (wavelets or derivatives) domain sparsity in
the ALOHA [31], Ongies method [30] and GSLR [34]. These
low rank structured matrix approaches obviously improve the
image reconstruction and provide flexibility to both uniformly
and randomly sparse sampling. Among them, those taking
advantage of the low-rank property, derived from the transform
domain sparsity, of weighted Hankel matrix in k-space hold
the flexibility to retain low-rankness since MRI images can
be sparsely represented via various transforms. ALOHA [31]
grew out of this observation and proposed to utilize the low-
rankness of weighted k-space data (Fig. 2) in reconstruction.
However, ALOHA separately enforces the low-rankness of
vertical and horizontal directions (Fig. 2 (b)), which results
in ALOHA yielding the suboptimal solution. Ongie et al. [30]
and GSLR [34] proposed to simultaneously enforce the low-
rankness of both vertical and horizont,al directions. However,

though calibration data, i.e. ACS (Fig. 1 (c)), is common in
parallel imaging and these low-rank structured matrix methods
[29], [31], [32], [34] are compatible to the parallel imaging as
shown in TABLE I, none of them take the calibration data into
consideration for better image reconstruction. It should be no-
ticed that AC-LORAKS [32] only used the calibration data for
algorithm acceleration but not for performance enhancement.

TABLE I
DIFFERENCES AMONG LOW RANK STRUCTURED MATRIX METHODS

Method Parallel
Imaging

k-space
Weighting

Simultaneous
Weighting

Calibration
Consistency

SAKE X × / ×
LORAKS

family X X X X

GSLR X X X ×
ALOHA X X × ×

STDLR-SPIRiT X X X X

Note: k-space weighting means k-space data Hadamard multiplying by
weights which are the Fourier transform of the convolved filters in sparse
representations. Simultaneous weighting indicates imposing low-rank con-
straints on horizontal and vertical directions. Calibration consistency means
exploiting the data consistency from calibration data. The slash / means the
corresponding operation is not needed or implemented yet.

In this work, we develop a k-space domain reconstruction
method that jointly explores the low-rankness and calibration
data. The two directional sparsity of the target image is
simultaneously enforced by minimizing the low-rankness of
the two directional weighting of the k-space. Besides, intra-
and inter-coil data relationships are enforced in the form of
self-consistency over k-space. Overall, it is expected that the
new approach can further reduce the image reconstruction
errors in parallel MRI.

The remainder of the paper is organized as follows. In Sec-
tion II, we briefly review the related `1-SPIRiT and ALOHA
methods. In Section III, the proposed method and algorithm
are described. Section IV demonstrates the reconstruction
performance and Section V discusses the effects of the number
of ACS lines, parameter settings, empirical convergence of
algorithm and comparison with other state-of-the-art low-rank
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structured matrix methods. Finally, conclusions will be drawn
in Section VI.

II. RELATED WORK

A. `1-SPIRiT

SPIRiT reconstructs parallel MRI image by enforcing the
self-consistency of multi-coil k-space data [4]. As shown in
Fig. 1 (d), SPIRiT first estimates the linear relation of the
intra- and inter-coil k-space data from a small area of the fully
sampled k-space center, which is also called as ACS (Fig. 1
(c)), and then applies this relationship to the rest of the k-space
data. In other word, SPIRiT enforces calibration consistency
between every point in k-space and its entire neighborhood
across all coils in an operator form:

X = GX, (1)

where X denotes k-space data for all coils, and G is an operator
that convolves the k-space data with a series of calibration
kernels that are estimated from the ACS (Fig. 1 (c)) [4]. Let Y
be the acquired k-space data with non-acquired positions zero-
filled for all coils and U represents the operator that performs
undersampling and zerofilling on non-acquired data points, the
data acquisition was given by:

Y = UX. (2)

Then, the SPIRiT reconstruction was formulated as:

min
X
‖GX−X‖2F s.t. ‖Y − UX‖2F ≤ ε, (3)

where ‖·‖F denotes the Frobenius norm, and ε is a parameter
that constraints the noise in the measurements. It has been
observed that SPIRiT outperformed SENSE and GRAPPA
with superior image quality [4]. To better regularize the image,
SPIRiT includes an additional penalty in the objective function
and constructed the so-called `1-SPIRiT model:

min
X
‖GX−X‖2F + λ

∥∥ΨF−1X
∥∥
1
s.t. ‖Y − UX‖2F ≤ ε, (4)

where Ψ denotes the sparse transform, F−1 denotes the
inverse Fourier transform and parameter λ balances the `1
constraint and calibration consistency.

B. ALOHA

In ALOHA [31], the MRI image S ∈ CM×N is assumed
to be sparse in transform domain. For instance,

ΨS = Z, (5)

where Ψ denotes a sparse transform, such as wavelet, and the
sparse signal Z is modeled as the finite superposition of Dirac
functions as

Z =

R∑
i=1

aiδ (x− xi, y − yi), (6)

where ai denotes the amplitude of the ith Dirac function, xi
and yi the shifts along the vertical and horizontal axes, and R
the number of Dirac functions.

Performing Fourier transform on (5), and with the convolu-
tion theorem of Fourier transform, we obtain the spectral form
of Z as below

M = F (Z) = F (ΨS) = F (Ψ)�F (S) = W�F (S) , (7)

where � denotes the Hadamard product and F denotes the
Fourier transform and W = F (Ψ) denotes the weights
obtained from applying Fourier transform to sparse transform
filters. (See Fig. 2 (a) for a schematic illustration).

According to the Theorem 2.1 in [31], the weighted k-space
M satisfies the low-rankness of the Hankel matrix HM as

rank (HM) = R. (8)

where H is an operator that converts M into a
block Hankel matrix [35]–[38] with a dimension of
(k1k2)× ((N − k1 + 1)(M − k2 + 1)), and k1 and k2 are
pencil parameters.

Assuming that the image is sparse in the transform domain,
then very few nonzeros are presented in Z, leading to an
effective R be much smaller than the size of block Hankel
matrix HM. Therefore, HM enjoys low-rank properties.
Ultimately, the recovery of undersampled k-space data can be
regarded as a low rank matrix completion problem [31] as:

min
M
‖HM‖∗ s.t. UM = Ŷ, (9)

where Ŷ = W �Ys, Ys denotes the acquired k-space of a
single coil and ‖·‖∗ denotes the matrix nuclear norm.

Extending the above model to multi-coil data acquisition in
parallel MRI, the image Sj of the jth coil is represented as:

Sj = Cj � Scomp, j = 1, 2, ..., J, (10)

where Cj denotes the sensitivity map of the jth coil, Scomp
the composite image.

A fatter matrix cascaded of Hankel matrices is formed as
below

L = [H (W �X1) , ...,H (W �Xj) , ...H (W �XJ)], (11)

where Xj = F (Sj) denotes the k-space data of the jth coil.
According to the derivation in [31], the matrix L is low-ranked.
Then, the ALOHA for parallel MRI reconstruction [31] was
expressed as:

min
Mj

‖[HM1, ....HMJ ]‖∗ ,

s.t. UMj = W �Yj , j = 1, ..., J.
(12)

where Mj = W �Xj and Yj denotes the acquired k-space
data in jth coil with non-acquired positions zero-filled.

It’s important to note that when applying weighting on
2D k-space data, ALOHA [31] applies weighting sequentially
on each direction. Specifically speaking, it first deals with
the optimization problem (13) that enforces weighting along
horizontal direction (Fig. 2 (b)), and then the solution of (13)
will be used as an initialization input for the optimization
problem (14) which applies weighting along vertical direction
(Fig. 2 (b)).

min
M=
‖HM=‖∗ s.t. UM= = W= �Y. (13)
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min
M⊥

∥∥HM⊥∥∥∗ s.t. UM⊥ = W⊥ �Y. (14)

where W= and W⊥ denote the weights which are the Fourier
transform of filters in the horizontal and vertical directions
(Fig. 2). Please note that ALOHA replaces the nuclear norm
terms in (13) and (14) with the equivalent non-convex terms
using the matrix factorizations technique [37]–[39] for algo-
rithm acceleration when ALOHA implementation.

Fig. 3. Reconstructed single-coil Shepp-Logan phantom using STDLR
and ALOHA. (a) Fully sampled Shepp-Logan phantom and 2D random
sampling pattern at sampling rate 0.15; (b)-(e) are reconstruction errors using
ALOHA and (f) is the reconstruction error using STDLR. (b) (or (c)) is the
reconstruction error produced by solely solving sub-problem (13) (or (14)),
respectively; (d) (or (e)) is the reconstruction error by first solving sub-problem
(13) and then (14) (or first solving (14) and then (13)) sequentially. Note: The
ALOHA with one-level pyramidal decomposition (determined by the filter
size) was compared here.

The non-convexity of the optimization problems and the se-
quential processing of the two non-convex problems, however,
make ALOHA undergoes the scarce of low rank constraint
along both directions simultaneously, resulting in the sub-
optimal reconstruction (Fig. 3). As shown in Figs. 3 (b) and
(c), distinct reconstruction errors are presented when solving
(13) (or (14)) as the first step for sequential reconstruction.
These errors may propagate into the subsequent reconstruction
and lead to a significant difference in the final reconstructed
images (Figs. 3 (d) and (e)). In addition, ALOHA provides ob-
viously different solutions when changing the order of solving
two sub-problems (Figs. 3 (d) and (e)), leading to difficulty in
choosing the optimal order in practical applications.

Therefore, properly exploring the low-rankness in k-space
along horizontal and vertical directions is very important to
reduce the image reconstruction errors.

III. PROPOSED METHOD

A. Proposed reconstruction model

In this work, we first propose to simultaneously enforce
the low-rankness of k-space both along horizontal and vertical
directions as follows:

(STDLR) min
Xs

‖HW=Xs‖∗+‖HW⊥Xs‖∗+
λ

2
‖Ys − UXs‖2F ,

(15)
where Xs denotes the targeted single-coil k-space data, Ys

the acquired single-coil k-space data and the nuclear norm
term ‖·‖∗ imposes the low-rank constraint on the weighted
Hankel structured matrix. We call this model, one of the two

proposed models in this work, STDLR for short. Please note
that the way we enforce jointly weighting is different from
the way Ongie’s [30] and GSLR methods [34] did in which
they cascaded the two weighting matrices together to enforce
low-rank constraint. In our way to enforce simultaneous
weighting, the low-rank matrices lie in much smaller signal
space expected to alleviate computation complexity. Compared
with ALOHA, STDLR imposes a stronger low rank constraint
allowing a possible better reconstruction. Reconstructions on
Shepp-Logan phantom (Fig. 3) show that STDLR achieves
lower reconstruction error than ALOHA.

A basic way to extend STDLR into parallel MRI is cascad-
ing the Hankel matrix of each coil into a fatter matrix [29],
[31] as:

H̃W=X = [HW= �X1, ...,HW= �XJ ] ,

H̃W⊥X = [HW⊥ �X1, ...,HW⊥ �XJ ] ,
(16)

where X = [X1,X2, ...,XJ ] denotes the targeted k-space
data from all coils and Y = [Y1,Y2, ...,YJ ] are ac-
quired k-space data with zero-filling at non-acquired posi-
tions, and W=X = [W= �X1, ...,W⊥ �XJ ], W⊥X =
[W⊥ �X1, ...,W⊥ �XJ ],

Then, a basic STDLR with cascaded Hankel matrices can
be modeled as:

min
X

∥∥∥H̃W=X
∥∥∥
∗

+
∥∥∥H̃W⊥X∥∥∥

∗
+
λ

2
‖Y − UX‖2F . (17)

Although the cascaded Hankel matrices were designed to
implicitly utilize the correlation among multiple coils, we
found this approach still suboptimal (Fig. 5(a)).

To reinforce the reconstruction in parallel imaging, our
intention is to mine the self-consistency, that are estimated
from the calibration data, over multi-coil k-space. In parallel
MRI, SPIRiT achieved promising results and suggested a
valuable concept that each k-space signal of a specific coil
can be formulated as a linear combination of the multi-coil
signals of its neighboring k-space points [3], [4]. Taking this
self-consistency property into account, we further exploit the
aforementioned proposed STDLR model in (15) to cope with
parallel imaging as:

(STDLR-SPIRiT) min
X

∥∥∥H̃W⊥X∥∥∥
∗

+
∥∥∥H̃W=X

∥∥∥
∗
+

λ1
2
‖GX−X‖2F +

λ2
2
‖Y − UX‖2F ,

(18)
where λ1 and λ2 trade off among the low-rank constraint, self-
calibration consistency and undersampled data fidelity. The
second proposed approach uses the same calibration G as the
SPIRiT. Since the third term is the same as the SPIRiT, we call
the second proposed model in (18) as STDLR-SPIRiT. The
schematic illustration of STDLR-SPIRiT is depicted in Fig.
4. The STDLR-SPIRiT holds the advantage over the STDLR
with cascaded Hankel matrices on reducing reconstruction
errors at edges. The reason is that STDLR-SPIRiT utilizes
the local linear relations existed in intra- and inter-coils that
have been explicitly estimated from ACS data (Figs. 5(a) and
(b)). Besides, although with the same ACS strategy, STDLR-
SPIRiT is particularly useful when the ACS data are limited,
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compared with the state-of-the-art sparsity-based SPIRiT [4]
as shown in Fig. 5 (d). These observations imply that both
the low-rankness and estimated self-consistency improve the
reconstruction in the proposed STDLR-SPIRiT.

Fig. 4. The flowchart of the proposed method. Note: W= and W⊥ denote
the weights in the horizontal and vertical direction.

Fig. 5. Reconstruction merits of 4-coil brain image using STDLR-SPIRiT. (a)-
(b) are the reconstruction errors of STDLR with cascaded Hankel matrices and
STDLR-SPIRiT; (c) a square root of sum of squares image of fully sampled
data; (d) is the reconstruction errors versus number of ACS lines by `1-SPIRiT
and STDLR-SPIRiT. All reconstructions in this experiment are conducted
under 1D Gaussian Cartesian undersampling pattern with a fixed sampling
rate of 0.34.

To tackle (18), time-consuming singular value decomposi-
tion (SVD) is hardly avoided since singular value thresholding
is utilized for nuclear norm minimization [37], [38], [40].
In our case, the size of low-rank matrix cascaded of Hankel
matrices (Jk1k2) × ((N − k1 + 1)(M − k2 + 1)) increases
dramatically after pencil parameters k1, k2 increase, resulting
in a sharp increase in SVD calculation time. For example,
the dimension of H̃W=X reaches 54756 × 2116 for a 4-
coil 256 × 256 image with pencil parameters k1 = 23,
k2 = 23. Performing one-time SVD on H̃W=X needs 12.25
second on a CentOS 7 computation server with two Intel
Xeon CPUs of 3.5GHz and 112GB RAM. Thus, we seek an
SVD-free algorithm to reduce the computation time. Here, we
employ matrix factorization technique [37], [38], [40], leading

to a dramatic reduction of computation time. The SVD-free
algorithm is based on the relationship [39] shown below:

‖A‖∗ = min
P,Q

1

2

(
‖P‖2F + ‖Q‖2F

)
s.t. PQH = A, (19)

where P and Q denote two factorized matrices, and the upper
subscript H denotes the Hermitian transpose of a complex
matrix. Hence, (18) can be reformulated as matrix factorization
constraint:

min
X,P,Q

1

2

∑
i

(
‖Pi‖2F + ‖Qi‖2F

)
+
λ1
2
‖GX−X‖2F +

λ2
2
‖Y − UX‖2F s.t. PiQ

H
i = H̃WiX.

(20)

where i denotes ⊥ or =, i.e. vertical and horizontal directions.
In summary, STDLR-SPIRiT in (18) is the final model of

this work. And (20) is the accelerated version of the proposed
STDLR-SPIRiT model to avoid the time-consuming SVD
computation.

B. SVD-free low rank reconstruction algorithm

Here, we adopt the Alternating Direction Method of Multi-
plier (ADMM) [41] to deal with the proposed model in (20).
It should be noticed that the non-convex optimization problem
(20) can be successfully solved by ADMM [31], [37], [38].
The augmented Lagrangian form of (20) is

max
Di

min
X,Pi,Qi

λ1
2
‖GX−X‖2F +

λ2
2
‖Y − UX‖2F +

1

2

∑
i

(
‖Pi‖2F + ‖Qi‖2F

)
+
∑
i

〈
Di, H̃WiX−PiQH

i

〉
+
∑
i

βi
2

∥∥∥H̃WiX−PiQ
H
i

∥∥∥2
F
,

(21)

where Di denotes the Lagrangian multiplier, 〈·, ·〉 the inner
product in the Hilbert space of complex matrices, defined by
〈A,B〉 = < 〈A (:) ,B (:)〉 = < (trace (A∗B)), < denotes
the real part, and βi denotes the penalty parameter for the
ith direction. The solution of (21) can be obtained through
alternatively solving sub-problems below:

X(k+1) = argmin
X

λ1

2
‖GX−X‖2F +

∑
i

〈
D

(k)
i , H̃WiX−P

(k)
i Q

(k)H
i

〉
+
λ2

2
‖Y − UX‖2F +

∑
i

βi

2

∥∥∥H̃WiX−P
(k)
i Q

(k)H
i

∥∥∥2
F
,

(22)
P

(k+1)
i =argmin

Pi

〈
D

(k)
i , H̃WiX

(k+1) −PiQ
(k)H
i

〉
+

1

2
‖Pi‖2F +

βi

2

∥∥∥H̃WiX
(k+1) −PiQ

(k)H
i

∥∥∥2
F
,

(23)

Q
(k+1)
i =argmin

Qi

〈
D

(k)
i , H̃WiX

(k+1) −P
(k+1)
i QH

i

〉
+

1

2
‖Qi‖2F +

βi

2

∥∥∥H̃WiX
(k+1) −P

(k+1)
i QH

i

∥∥∥2
F
,

(24)

D
(k+1)
i = D

(k)
i + τi

(
H̃WiX

(k+1) −P
(k+1)
i Qi

(k+1)H
)
. (25)
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Fig. 6. Reconstruction results and errors of a phantom using the Cartesian pattern with a sampling rate of 0.27. (a) An SSOS image of fully sampled data;
(b-e) SSOS images of reconstructed results by GRAPPA, `1-SPIRiT, ALOHA and STDLR-SPIRiT, respectively; (f) the Cartesian undersampling pattern; (g-j)
the reconstruction error distribution corresponding to the above methods.

where τi is the step size of the ith direction and is set as 1 for
all i. For fixed P

(k)
i , Q(k)

i and D
(k)
i , X(k+1) has a close-form

solution as

X(k+1) =

(
λ1 (G∗G − G∗ − G + I) +

∑
i

βiW∗i H̃∗H̃Wi+

λ2U∗U
)−1

[
λ2U∗Y +

∑
i

βiW∗i H̃∗
(
P

(k)
i Q

(k)H
i −

D
(k)
i

βi

)]
,

(26)
where the upper subscript ∗ denotes the adjoint operator. For
fixed X(k+1), Q(k)

i and D
(k)
i , P(k+1)

i is obtained by

P
(k+1)
i =

(
βiH̃WiX

(k+1)+D
(k)
i

)
Q

(k)
i

(
I+βiQ

(k)H
i Q

(k)
i

)−1
. (27)

For fixed X(k+1), P(k+1)
i and D

(k)
i , Q(k+1)

i can be solved by

Q
(k+1)
i =

(
βiH̃WiX

(k+1) +D
(k)
i

)∗
P

(k+1)
i

(
I+ βiP

(k+1)H
i P

(k+1)
i

)−1
.

(28)

The numerical algorithm is summarized in Algorithm 1.

Algorithm 1 MRI image reconstruction with STDLR-SPIRiT
Input: Y, U , G, λ1, λ2, τi, βi .
Initialization: Pi and Qi are initialized as random matrix, Di = 1, and
k = 1.
Output: X.
1: while k ≤ 100 and

∥∥X(k+1) −X(k)
∥∥2
F
/
∥∥X(k)

∥∥2
F
≥ 10−6 do

2: Update X by solving equation (26);
3: Update Pi by using (27);
4: Update Qi by using (28);
5: Update multiplier Di by using (25);
6: k = k + 1;
7: end while

IV. EXPERIMENTAL RESULTS

In this section, the reconstruction performance of the pro-
posed method is evaluated on phantom and in vivo MRI data.
Cartesian sampling with random phase encoding, pseudo radial
sampling and 2D random sampling data are retrospectively
constructed from fully sampled data. The ACS signals of
sampling patterns are optimized for kernel estimation. The

TABLE II
DIFFERENCES AMONG COMPARED METHODS.

Method Calibration
consistency

Image
sparsity

k-space
low-rankness Wavelet

GRAPPA X × × /
`1-SPIRiT X X × db4
ALOHA × × X Haar

STDLR-SPIRiT X × X Haar

Note: If the constraint, such as calibration consistency, image sparsity and k-
space low-rankness is checked of the method row, it means the corresponding
constraint was enforced directly in the approach. Image sparsity means
imposing sparse assumption in transform domain. The k-space low-rankness
means imposing low rank constraint in k-space domain. Wavelet denotes the
type of wavelet used in sparsifying transform or k-space weighting.

proposed method, STDLR-SPIRiT, is compared with three
state-of-the-art reconstruction methods including GRAPPA,
`1-SPIRiT and ALOHA. Both GRAPPA and `1-SPIRiT are
typical parallel imaging reconstruction methods using kernel
estimation. In addition, the `1-SPIRiT exploits the sparsity
of images under wavelets transform. ALOHA with cascaded
Hankel matrices in (12) is chosen for comparison since it
utilizes the low-rankness of weighted k-space of multi-coil
data. Differences among these methods are summarized in
Table II.

The implementation of GRAPPA and `1-SPIRiT was shared
at Dr. Michael Lustigs website [42] while ALOHA was shared
at Dr. Jong Chul Ye website [43]. Parameters of all the
compared methods are optimized to obtain the lowest RLNE
(See Supplementary Material for details). All computation
procedures run on a CentOS 7 computation server with two
Intel Xeon CPUs of 3.5 GHz and 112 GB RAM. For 4-coil
parallel MRI, the reconstruction time of GRAPPA, `1-SPIRiT,
ALOHA, and the proposed STDLR-SPIRiT are 26.8 seconds,
22.5 seconds, 458.3 seconds, and 1090.3 seconds, respectively.

In all experiments, the reconstructed multi-coil images are
combined by a square root of sum of squares (SSOS), and the
error distributions of multi coils were combined into single-
coil difference image with SSOS.
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(a) (b) (e)(d)(c)

(f) (g) (h) (i) (j)

Fig. 7. Reconstruction results and errors of human brain using the Cartesian pattern with a sampling rate of 0.34. (a) An SSOS image of fully sampled data;
(b-e) SSOS images of reconstructed results by GRAPPA, `1-SPIRiT, ALOHA and STDLR-SPIRiT, respectively; (f) the Cartesian undersampling pattern; (g-j)
the reconstruction error distribution corresponding to reconstructed image above them.

We adopt relative `2 norm error (RLNE) and mean structure
similarity index measure (MSSIM) [44] as objective criteria to
quantify the reconstruction performance. The RLNE is defined
as

RLNE =
‖x− x̂‖2
‖x‖2

, (29)

where x denotes the column stacked fully sampled k-space
data and x̂ the column stacked reconstructed k-space data.
A lower RLNE demonstrates higher consistency between the
fully sampled image and the reconstructed image. The mean
measure of structural similarity (MSSIM) on two images A
and B is calculated through

MSSIM (A,B) = 1
M

M∑
i=1

(2µai
µbi

+C1)(2σaibi
+C2)(

µ2
ai

+µ2
bi

+C1

)(
σ2
ai

+σ2
bi

+C1

) , (30)

where A and B represent fully sampled and reconstructed
SSOS images, respectively; µai , µbi , σai , σbi and σaibi

respectively denote the means, standard deviations and co-
variance of the local window ai and bi; M the number of
local windows. Constants C1 and C2 are introduced to avoid
the case when the denominator multiplied by µ2

ai
+ µ2

bi
and

σ2
ai

+ σ2
bi

is close to zero. A higher MSSIM indicates higher
detail preservation in reconstruction.

A. Experiments on Phantom Data

The fully sampled Phantom data (Fig. 6 (a)) were acquired
from a 3T SIEMENS Trio whole-body scanner (Siemens
Healthcare, Erlangen, Germany) equipped with a 32-coil head
coil, using 2D T2-weighted turbo spin echo sequence (matrix
size = 384 × 384, TR/TE = 2000 ms /9.7 ms, FOV = 230
mm×187 mm, slice thickness = 5 mm). The acquired data of
32 coils were compressed into eight virtual coils [45]. Recon-
structions of phantom data are depicted in Fig. 6. GRAPPA
(Fig. 6 (b)) and ALOHA (Fig. 6 (d)) reconstructed images
exhibit obvious ringing artifacts in both the white background
region and gray objects. `1-SPIRiT (Fig. 6 (c)) produces
good reconstructed image with better artifacts suppression.
But, with closer inspection, visible noise of the left-bottom

oblique sectors can be found. In comparison, STDLR-SPIRiT
preserves image resolution and sharped edges (Fig. 6 (e)).
Also, the difference images and quality metric in Table III
serve to demonstrate STDLR-SPIRiT possessing the lowest
reconstruction error (Fig. 6 (j)) and highest MMSIM.

TABLE III
RLNE/MSSIM FOR PHANTOM AND HUMAN BRAIN DATA

RECONSTRUCTIONS.

Images GRAPPA `1-SPIRiT ALOHA STDLR-SPIRiT

Fig. 6
0.0862 0.0692 0.0827 0.0470
/0.8951 /0.9674 /0.9512 /0.9831

Fig. 7
0.1335 0.0866 0.1117 0.0735
/0.9609 /0.9868 /0.9791 /0.9919

Fig. 8
0.2726 0.1891 0.1840 0.1187
/0.9067 /0.9485 /0.9523 /0.9777

Fig. 9
0.1127 0.0848 0.0997 0.0744
/0.9411 /0.9755 /0.9723 /0.9833

B. Experiments on Brain Imaging Data

Three brain datasets are used in experiments here. The
first brain dataset shown in Fig. 7 and Fig. 10 (a) were two
slices acquired from a healthy volunteer using the 2D T2-
weighted turbo spin echo sequence (matrix size = 256 ×
256, TR/TE=6100 ms/99 ms, field of view = 220 mm ×
220 mm, slice thickness = 3mm). They were obtained from a
3T SIEMENS Trio whole-body scanner (Siemens Healthcare,
Erlangen, Germany) equipped with a 32-coil head coil. Four
virtual coils were compressed from the acquired data of 32
coils [45]. The second brain dataset shown in Fig. 9 and
Fig. 10 (b) were two slices acquired from a healthy volunteer
on a 1.5T Philips MRI scanner (Philips Healthcare Best, the
Netherlands) equipped with an 8-coil head coil using the 2D
T1-weighted fast-field-echo sequence (matrix size = 256 ×
256, TR/TE = 1700 ms/390 ms, FOV = 230 mm×230 mm,
slice thickness = 5 mm). The third brain dataset depicted in
Fig. 10 (c) were acquired from a 3T GE MRI scanner (GE



8

Healthcare, Waukesha, Wis, USA) equipped with a 12-coil
head coil using the 2D T1-weighted SPGR sequences (matrix
size = 256 × 256, TR/TE = 400 ms/9 ms, FOV = 240 mm ×
240 mm, slice thickness = 6 mm.).

Serious ringing artifacts remain in the reconstructions by
GRAPPA (Fig. 7 (b)) and ALOHA (Fig. 7 (d)). The `1-SPIRiT
produces the visually similar reconstructed image (Fig. 7 (c))
as STDLR-SPIRiT does. Both methods show great capability
of artifacts suppression and present reliable reconstructions.
For better visualization of their differences, we offer zoom-
in images of reconstructions. From the zoom-in images, we
could observe relatively stronger noise in `1-SPIRiT recon-
struct image and to some extend, blur of details. Nevertheless
STDLR-SPIRiT restores image with better signal to noise ratio
and fine details preservation (Fig. 7 (e)). In addition, the error
images illustrate that the proposed STDLR-SPIRiT achieves
the lowest reconstruction error (Fig. 7 (j)). Objective criteria
in Table III indicates that the proposed method produces the
lowest reconstruction error and the highest structure similarity
to the fully sampled image. Evaluation criteria are consistent
with visual inspections mentioned above.

(d) (e)

(h)(g)(f)

(c)
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Fig. 8. The reconstruction results of T2-weighted brain image versus different
sampling rates under Cartesian undersampling pattern. (a) and (b) display
the variation trends of RLNE and MSSIM respectively; (c) the Cartesian
undersampling pattern with a sampling rate of 0.24; (d) an SSOS image of
fully sampled data; (e-h) SSOS images of reconstructed results by GRAPPA,
`1-SPIRiT, ALOHA and STDLR-SPIRiT. Note: The fully sampled images in
Figs. 7 and 8 are the same.

As shown in Figs. 8 (a) and (b), with the increase of
sampling rates, the growth of MSSIM and decline of RLNE
are observed in all methods. Moreover, the STDLR-SPIRiT
outperforms other methods under all sampling rates in terms

Fig. 9. Reconstructed brain images using pseudo radial pattern with sampling
rate of 0.20. (a) An SSOS image of fully sampled data; (b, c, e, f) reconstruc-
tion errors introduced by GRAPPA, `1-SPIRiT, ALOHA and STDLR-SPIRiT;
(d) pseudo radial undersampling pattern; (g) and (h) display the RLNE and
MSSIM versus sampling rate, respectively.

of RLNE and SSIM. Particularly, even at a relatively low
sampling rate (0.24), the proposed method still provides
reliable reconstructions (Fig. 8 (h)) whereas GRRAPA and
ALOHA images carry distinct artifacts. `1-SPIRiT produces an
image with nice artifacts suppression (Fig. 8 (f)), nonetheless
the image is blurred (the zoom-in image) and bear incorrect
contrast reconstruction of the withe matter in some areas,
for instance, the mottled white matters around the image
center. By contrast, STDLR-SPIRiT retains promising image
resolution and fine details as the fully sampled image does
(Fig. 8 (h)).

An experiment with the pseudo radial sampling pattern
was conducted, and results were shown in Fig. 9. All tested
approaches provide good reconstructions with relatively small
error. The overall error of GRAPPA reconstruction seems to
be the biggest one, but its error inside the skull has nice
random distribution, which would be preferred in applications.
`1-SPIRiT, ALOHA and STDLR-SPIRiT errors have reached
the promising low level, assuring reliable reconstructions. It
is worthy of mentioning that STDLR-SPIRiT outperforms
compared methods interns of RLNE and MSSIM, and obtains
the smallest reconstruction error, which serves as another
demonstration for the state-of-the-art performance of the pro-
posed method. Other undersampling patterns and brain images
in Fig. 10 are also used for reconstruction for further validation
and the RLNE and MSSIM metrics are summarized in Table
IV. Superior metrics provided by the proposed method imply
better reconstructed images.
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Fig. 10. More brain images and undersampling patterns. (a-c) Three different
brain images; (d) the Cartesian sampling pattern of sampling rate 0.34; (e)
the pseudo radial sampling pattern of sampling rate 0.20; (f) the 2D random
sampling pattern of sampling rate 0.18.

TABLE IV
RLNE/MSSIM RESULTS FOR BRAINS IN FIG. 10 USING DIFFERENT

SAMPLINGS.

Images Pattern GRAPPA `1-SPIRiT ALOHA STDLR-
SPIRiT

Fig.10(a)

Fig. 10(d)
0.1399 0.1110 0.1232 0.0904
/0.9626 /0.9799 /0.9754 /0.9883

Fig. 10(e)
0.1222 0.1013 0.1370 0.0879
/0.9704 /0.9798 /0.9722 /0.9869

Fig. 10(f)
0.1540 0.1013 0.1103 0.0832
/0.9523 /0.9788 /0.9764 /0.9878

Fig.10(b)

Fig. 10(d)
0.1854 0.1115 0.1132 0.0903
/0.8665 /0.9518 /0.9490 /0.9682

Fig. 10(e)
0.1260 0.1005 0.1103 0.0846
/0.9259 /0.9632 /0.9617 /0.9754

Fig. 10(f)
0.1706 0.1018 0.1011 0.0851
/0.8693 /0.9574 /0.9584 /0.9725

Fig.10(c)

Fig. 10(d)
0.1306 0.0830 0.0916 0.0779
/0.9362 /0.9883 /0.9830 /0.9902

Fig. 10(e)
0.1161 0.0864 0.1073 0.0822
/0.9624 /0.9880 /0.9827 /0.9905

Fig. 10(f)
0.1269 0.0859 0.0952 0.0807
/0.9437 /0.9876 /0.9851 /0.9908

V. DISCUSSIONS

A. Discussion on ACS

The proposed STDLR-SPIRiT is robust to the number of
ACS lines. As shown in Fig. 11 (a), the reconstruction errors
- RLNE - of STDLR-SPIRiT the smallest among all methods.
The SPIRiT monotonically reduces reconstruction errors when
the number of ACS lines increases. When ACS signals (> 14
lines) are enough, the `1-SPIRiT achieves much lower error
than GRAPPA and ALOHA. These observations indicate that
the SPIRiT effectively mines the self-consistency of k-space
via ACS, resulting in improved image reconstruction. How-
ever, with a decrease of ACS lines (< 14 lines), the accuracy
of kernels estimated in the `1-SPIRiT would decrease, leading

to a higher RLNE than that of ALOHA. This observation
suggests that low-rankness in ALOHA is a very valuable
property to regularize image reconstructions and may alleviate
the influence of the decline of ACS numbers. The proposed
STDLR-SPIRiT inherits advantages of SPIRiT and ALOHA,
leading to the lowest reconstruction error under all the number
of ACS lines.

Fig. 11. The variation trends of RLNE (a) and MSSIM (b) versus the
number of ACS lines. This experiment is carried out with a series of Gaussian
Cartesian sampling patterns but all at the same sampling rate of 0.34. The
difference between each sampling pattern is the number of ACS lines. Note:
all experiments are conducted on the brain data shown in Fig. 7 (a).

B. Discussion on Parameter Settings

In this subsection, the effect of parameters setting in
STDLR-SPIRiT will be discussed, including regularization
parameters λ1 and λ2 as well as pencil parameters k1 and k2.
The brain image in Fig. 7 (a) and the sampling pattern in Fig.
7 (f) were used to perform reconstructions. Typical settings are
λ1 = 104, λ2 = 106 and k1 = k2 = 23. When one parameter
is analyzed, other parameters are set as the typical values.

The reconstruction errors versus different values of regular-
ization parameters are depicted in Fig. 12 (a). The selection
of λ1 and λ2 relies on noise level and the amount of ACS
data for kernel estimation. As can be seen in Fig. 12 (a),
under fixed noise level and sampling pattern, there exists a
wide range of λ1 (101 ≤ λ1 ≤ 105) and λ2 (104 ≤ λ2 ≤ 107)
leading to relatively low reconstruction errors. Too small or too
large values of λ1 and λ2 produce higher reconstruction errors.
When the amount of data for SPIRiT kernel estimation are not
adequate, we suggest choosing a relatively small value for λ1
to alleviate the effect of less accurate kernel estimation. In this
paper, we set λ1 = 104 and λ2 = 106 for all experiments.

The values of k1 and k2 determine the size of the block
Hankel matrix, which in turn affect the rank of the matrix. The
rank of block Hankel matrix is related to the sparsity level of
transform domain. When k1 and k2 are too small (for example,
less than 13 here), the rank of the block Hankel matrix is
smaller than the sparsity level, leading to larger reconstruction
errors, as shown in Figs. 12 (b) and (c). When k1 and k2 are
bigger than the sparsity level of the transform domain, the
reconstruction errors are not sensitive to k1 and k2 values.
However, big values of k1 and k2 cost large computation load.
Therefore, there is a tradeoff between reconstruction quality
and computation load, we empirically set k1 and k2 in the
range from 21 to 25.
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Fig. 12. Variation trends of reconstruction errors by STDLR-SPIRiT with
different parameter settings. (a) The RLNE versus regularization parameters;
(b-c) the RLNE and MSSIM versus pencil parameters. Note: all experiments
are conducted on the brain data shown in Fig. 7 (a) under Gaussian Cartesian
undersampling pattern shown in Fig. 7 (f).

C. Algorithm Convergence
We adopted ADMM [41] to solve the non-convex STDLR-

SPIRiT model in 18. It has been shown that ADMM can
be used for successfully solving non-convex optimization
problems [31], [37], [38]. Empirically, we observed that RLNE
decreases to a relatively small value as iteration increases
(e.g. the point C depicted in 13(a)), and then stabilizes in
a small RLNE level. For example, as the iteration rises (from
point A to C), proposed approach achieving increasingly better
reconstruction, and eventual provides reliable reconstruction
(13(c-d)).

Fig. 13. Empirical convergence results. (a) is the empirical convergence
of STDLR-SPIRiT; (b-e) are reconstructions of STDLR-SPIRiT at A to D
iterations depicted in (a), respectively.

D. Comparison with Other State-of-the-art Methods
In this sub-section, we compare the performance of the pro-

posed method with other state-of-the-art low-rank structured

matrix approaches AC-LORAKS(S) [32] and GSLR [34] on
two data set.

(b)(a) (d)

(e)

(c)

(g)(f) (h)

(k) (l)(j)(i)

(m) (n) (o) (p)

Fig. 14. Reconstructions of multi-coils brain images. (a) An SSOS image
of fully sampled image; (b-d) SSOS images of reconstructed images by AC-
LORAKS(S), GSLR and STDLR-SPIRiT; (e) the pseudo radial undersampling
pattern with a sampling rate of 0.20; (f-h) the reconstruction error distribution
corresponding to the above methods; (i) an SSOS image of the fully sampled
image; (j-l) SSOS images of reconstructed images by AC-LORAKS(S),
GSLR and STDLR-SPIRiT; (m) the 2D random undersampling pattern with a
sampling rate 0.18; (n-p) the reconstruction error distribution corresponding to
the above methods. Note: The first tested image and the corresponding pseudo
pattern were from Fig. 9. The second tested image and the corresponding 2D
random pattern were from Fig. 10.

Here we choose AC-LORAKS(S) instead of other LORAKS
variants since AC-LORAKS and the proposed method both
exploit the calibration data, but, please note AC-LORAKS
uses it for only algorithm acceleration. The letter ’S’ in the
bracket of AC-LORAKS(S) denotes the applying of phase
constraint in AC-LORAKS. It has been shown that LORAKS
with phase constraint produces the best result compared with
other constraints [28], such as, support constraint. Regarding
of GSLR, it cascades the weighting matrices on the horizontal
and vertical directions into a fatty low-rank matrix, which
increases the computational complexity, and suggests that
imposing simultaneous weighting on multi-coils images would
be difficult because the resulting matrix would be of vast
dimension. Note that the GSLR code shared by the author
reconstructs multi-coils images channel-by-channel, that is to
say, GSLR makes no use of the correlations among coils.
This indicates GSLR reconstruction may be inferior to that
of STDLR-SPIRiT.

Reconstructions of the tested images were presented in Fig.
14, in which AC-LORAKS(S), GSLR and STDLR-SPIRiT
all provide images with nice artifacts suppression. However,
apparent noise could be inspected in AC-LORAKS(S) recon-
struction (Figs. 14(b) and (j)), but this may not be a bad
thing because it allows for a better visualization of the image.
In addition, blurring of image can be observed in GSLR
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reconstruction (Figs. 14(g) and (k)). Whilst STDLR-SPIRiT
produces promising reconstruction with satisfying noise level
and resolution (Figs. 14(d) and (i)). The error images shown
in Figs. 14 (f-h) and (n-p) reveals STDLR-SPIRiT embracing
the lowest structure error compared with AC-LORAKS(S) and
GSLR. The GSLR yielding obvious error compared with the
proposed method verifies the aforementioned discussion about
GSLR.

VI. CONCLUSION

A simultaneous two-directional low-rank structured Hankel
matrix reconstruction approach, STDLR-SPIRiT, is proposed
for accelerated data acquisition in parallel MRI. The pro-
posed approach simultaneously utilizes the self-consistency
of k-space data and the low-rankness of the weighted k-
space data, which yields a better exploitation of correlation
among inter- and intra-coils. The STDLR-SPIRiT provides
robust reconstruction with a limited number of auto-calibration
signals. Experiments on phantom and brain MRI demonstrate
that the proposed approach achieves superior performance in
artifacts suppression and edge preservation than the state-of-
the-art methods. Although a singular value decomposition-
free algorithm is derived to reduce the computation load,
faster algorithms are still expected in the future [28], [30].
Besides, the low rank Hankel matrix is highly related to
exponential functions, and latest reconstruction methods of
multi-dimensional exponentials [46], [47] may improve the
Hankel-based MRI reconstruction or be extended into higher
dimensional MRI in fast imaging.
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SUPPLEMENTARY MATERIAL

We ran reconstruction experiments using compared ap-
proaches with a series of combinations of model-specific
parameters subjecting to each tested data, and the parameters
of each method allowing the lowest RLNEs were chosen. The
detail parameter settings of GRAPPA and `1-SPIRiT are listed
in TABLE V and TABLE VI. As for ALOHA, two levels of
pyramidal decomposition are adopted with LMaFit tolerances
10−1, 10−2. For our proposed method, we set k1 = k2 = 23,
λ1 = 104 and λ2 = 106 for all experiments.
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