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Abstract: Sum-modified-Laplacian-based multifocus image fusion algorithm in cycle spinning sharp frequency localized contourlet 

transform (SFLCT) domain is proposed in this paper. SFLCT successfully reduces significant amount of aliasing components of the 

original contourlet which are located far away from the desired support. However, downsamplers and upsamplers presented in 

directional filter banks of SFLCT make it not shift-invariant and easily cause pseudo-Gibbs phenomena around singularities. Thus, we 

apply cycle spinning to compensate for the lack of translation invariance property. Furthermore, typical measurements for multifocus 

image fusion in spatial domain are introduced into contourlet domain and Sum-modified-Laplacian (SML), evidenced in this paper 

with the best capability to distinguish coefficients is from the clear parts or blurry parts of images, is employed in SFCLT subbands as 

measurement to compose coefficients of fused images. Experimental results demonstrate the proposed fusion method outperforms 

block-based spatial SML method, typical cycle spinning wavelet and shift-invariant wavelet methods, and typical cycle spinning 

contourlet methods in term of visual appearance and objective criteria for multifocus images. 

Keywords: Image fusion, contourlet, pseudo-Gibbs phenomena, wavelet 
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1 Introduction 

Imaging cameras, particularly those with long focal 
lengths, usually have only a finite depth of field. It is 
often not possible to get an image that contains all 
relevant objects in focus. Images are clear with 
good-focus and blurry with out-of-focus. So, a 
good-focus image is important for the human 
perception and machine vision. Image fusion is a good 
way to obtain a focalized image by combining multiple 
sensors data and providing more reliable and accurate 
information [1] [2]. For multifocus image fusion, this 
information is from the clear parts of source with 
good-focus. 

There are two main methods for multifocus image 
fusion. One is selecting pixels form clear parts in the 
spatial domain to compose fused images [3]-[4]. Most 
of these methods are combing the blocks according to a 
measurement which evaluate the part is clear or not. 
These blocks are often in form of window with certain 
size or regional parts obtained by segmenting images. 
However, window-based method may easily produce 
block effect which affects the appearance of fused 
image a lot. And segmentation-based method is strongly 
dependent on the segmentation algorithm which is also 
another difficult problem in image processing. More 
badly, if an object of one source image is partly clear 
and partly blurry, the blurry part may be selected as part 
of the fused image when considering the integrality of 
the segmented part. 

Another multifocus fusion method is combing the 
coefficients in multiscale decomposition (MSD) 
transform domain under the assumption that image 
details are contained in the high-frequency subbands. 
These transforms could be wavelet [2], bandelet [5], 
curvelet [6] and contourlet [7]-[9]. One of the 
well-known MSD methods for image fusion is wavelet 
[2].  

However, traditional separable wavelet can only 
capture limited directional information and will not see 
the smoothness along contours [10]. Contourlet [10] 
solves the two-dimensional or high dimensional 
discontinuities and offers a flexible multiresolution and 
directional decomposition for images. It has been 
successfully employed and evidenced to outperform 
wavelet in image processing [10] - [12] including image 

fusion [7]-[9]. Unfortunately, the original contourlet [10] 
exhibit some fuzzy artifacts along the main image 
ridges because of non-ideal filter. Yue Lu [13] proposes 
a new construction of the contourlet, called sharp 
frequency localization contourlet transform (SFLCT) 
and alleviates the non-localization problem. 

However, due to downsamplers and upsamplers 
presented in the directional filter banks of SFLCT, 
SFLCT is not shift-invariant, which easily causes 
pseudo-Gibbs phenomena around singularities and is 
important in multifocus image fusion[8][14][15]. In this 
paper, we apply cycle spinning [14][15] to compensate 
for the lack of translation invariance property of SFLCT, 
named as CS-SFLCT, and introduce it into image 
fusion. 

In addition, a good fusion method not only on relies 
on the transform but also depend on how to combine 
the coefficients in transform domain. Particularly, for 
multifocus image fusion, the key point is establishing a 
good measurement to successfully distinguish the 
coefficients is from the clear parts from blurry parts. 
Thus, some typical measurements in the spatial domain 
[2] are compared and we introduce 
sum-modified-Laplacian (SML) of the coefficients as a 
measurement. Coefficients with greater SML are 
selected out to compose fused image when 
high-frequency subbands of source images are 
compared. We name the proposed fusion method as 
CS-SFLCT-SML in this paper.  

The outline of this paper is as follows: Section 2 brief 
introduces CS-SFLCT and give framework of applying 
CS-SFLCT to image fusion. Section 3 proposes 
SML-based fusion rule basing on performance 
comparison of focus measurements. Section 3 gives the 
fruitful experiments to show the advantage of 
CS-SFLCT-SML on suppressing Gibbs-phenomena and 
selecting coefficients from clear parts. Then conclusion 
and discussion are given in section 5. 

2 Cycle spinning Sharp Frequency 

Localized Contourlet Transform 

for Image Fusion  

2.1 Sharp Frequency Localized Contourlet 

Transform 

The original contourlet [10] is constructed by the 
combination of laplacian pyramid, which is first used 
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to capture the point discontinuities, and the directional 
filter banks (DFB), which is used to link point 
discontinuities into linear structure. In the frequency 
domain, the laplacian pyramid iteratively decompose a 
two dimensional image into lowpass and highpass 
subbands and the DFB divide the highpass subbands 
into directional subbands. 

When non-ideal filters are combined with laplacian 
pyramid, the contourlets are not localized in frequency, 
with substantial amount of aliasing components 
outside of the desired trapezoid-shaped support [13]. 
To solve this problem, Yue Lu [13] proposes a new 
construction of a sharp frequency localization 
contourlet (SFLCT). Since the combination of 
laplacian pyramid and directional filters banks make 
the aliasing problem serious, new multiscale pyramid 
with different set of lowpass and highpass filters for 
the first level and all other levels are employed. 

Suppose lowpass filters ( )( )0,1iL i =ω  in the 

frequency domain as ( ) ( ) ( )1 1
1 2i i

d d
iL L Lω ω= •ω  

and ( )1
i

dL ω  is a 1-D lowpass filter with passband 

frequency ,p iω and stopband frequency ,s iω  and a 

smooth transition band, defined as 
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Under the assumption that aliasing can be 
completely cancelled, the perfect reconstruction of 
multiscale pyramid should satisfy 

( ) ( )2 2
1, fori iL D i = 0,1ω ω+ ≡ 　　 　

 
Fig.1 shows the comparison on basis image of the 

original contourlet and SFLCT. (a) and (b) indicate 
that the frequency non-localization problem is serious 
in the original contourlet while this problem is 
suppressed by new contourlet construction and the 
spatial regularity of contourlet is greatly improved in 
SFLCT as shown in (c) and (d).   

    
(a)       (b)       (c)      (d) 

Fig.1 Basis images of original contourlet and sharp frequency 
localized contourlet (SFLCT). (a) and (b) are basis images of 
original contourlet and SFLCT in frequency domain, (c) and (d) are 
basis images of the two transforms in spatial domain. 
2.2 Cycle Spinning Sharp Frequency Localized 

Contourlet Transform for Image Fusion 

Unfortunately, downsamplers and upsamplers 
presented in the directional filter banks of SFLCT 
makes it lack shift-invariance, which could easily 
produce artifacts around the singularities, e.g. edges. 
Thus, Cycle Spinning (CS) [14] [15] is employed in 
this paper to compensate for the lack of translation 
invariance. It is a simple yet efficient way to improve 
the performance for a shift variant transform. For 
simplicity, we call the new form of SFLCT as 
CS-SFLCT. 

Suppose 1f  , 2f and F  are the source and fused 

images, C  and 1C−  are the forward and inverse 

SFLCT, ,x yS  is the cycle spinning method and ,x y  

are the shift arranges in horizontal and vertical 
directions, and h  is the fusion process in SFLCT 
domain, the CS-SFLCT image fusion method could be 
described as follows and the framework is shown 
Fig.2. 

( )( ) ( )( ){ }, , 1 , 2,x y x y x yF S h C S f C S f− −
⎡ ⎤= ⎣ ⎦  

Usually, x X∈ and y Y∈  indicate a series of 

shift arranges { }1 2, , , mX x x x=  and 

{ }1 2, , , nY y y y= . If the size of source images are 

M N× , the maximum shift ( )max maxx X= in 

horizontal direction must satisfy maxx M≤  and the 

maximum shift ( )max maxy Y= in vertical direction 
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must satisfy maxy N≤ . Therefore, Cycle spinning 

averages out the translation dependence of subsampled 
directional filter banks as  

( )( ) ( )( ){ }{ }, , , 1 , 2,x X y Y x y x X y Y x X y YF Ave S h C S f C S f∈ ∈ − − ∈ ∈ ∈ ∈
⎡ ⎤= ⎣ ⎦
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3 Fusion Rules 
For image fusion, how to combine the coefficients 

in MSD domain is another key point. Generally, 
coefficients with high activity-level, typically with 
maximum absolute values, are selected to compose the 
fused image [2]. Particularly, for multifocus image 
fusion, coefficients which are with high variation and 
from the clear parts of source images are selected to 
compose the fused image. 

3.1 Fusion of low-frequency coefficients 

Considering approximate information of image is 
constructed by the low-frequency coefficients [2], 
average rule is adopted for low-frequency coefficients. 
Suppose ( ), ,l k

FB i j is the fused low-frequency 

coefficients located at ( ),i j  in the -thl scale and  

-thk direction subband, then 
                   

( ) ( ) ( ), ,
1 2, , ,

,
2

l k l k
l k
F

B i j B i j
B i j

+
=      (1) 

where ( ),
1 ,l kB i j and ( ),

2 ,l kB i j  denote the 

low-frequency coefficients located at the same place of 
subbands. 
3.2 Fusion of high-frequency coefficients 

Under the assumption that image details are 
contained in the high-frequency subbands in MSD 

transform domain, the typical fusion rule is 
maximum-based rule, which selects high-frequency 
coefficients with maximum absolute value [2], named 
as Coeffs-max rule in this paper. 

For multifocus image fusion, many typical focus 
measurements, e.g. energy of image gradient (EOG), 
Tenengrad, spatial frequency (SF) and laplacian 
energy (EOL) and SML in the spatial domain are 
compared in [3]. They all measure the variation of 
pixels. Pixels with greater values of these 
measurements, when source images are compared, are 
considered from clear parts and selected as the pixels 
of the fused image. Since subbands of multifocus 
images in SFLCT domain can be viewed as image and 
the variation of subbands also exist as shown in the 
labeled region of Fig.3 (d) and (e), therefore it is 
reasonable to utilize EOG, Tenengrad, SF, EOL and 
SML as the measurements to select coefficients from 
the clear parts of source images. 

However, to be different from the measurements 
defined in [3], coefficients in the SFLCT domain, not 
the pixel value in spatial domain, are used to compute 
the measurements. For example, suppose   

( ), ,l kI i j  denotes the coefficient located at ( ),i j  

in the -thl  scale and -thk  direction subband, the 
modified Laplacian (ML) and SML is defined as 
follows: 

( ) ( ) ( ) ( )
( ) ( ) ( )

, , , ,

, , ,

, 2 , step, step,

2 , , step , step

l k l k l k l k

l k l k l k

ML i j I i j I i j I i j

I i j I i j I i j

= − − − +

+ − − − +　　　　　　

 

where step is a variable spacing between coefficients 
and in this paper step always equals 1. 

( ) ( ) 2, ,, ,
QP

l k l k

p P q Q

SML i j ML i p j q
=− =−

⎡ ⎤= + +⎣ ⎦∑ ∑   (2) 

where the parameters P  and Q  determine the 

window with size ( ) ( )2 1 2 1P Q+ × +  are used to 

compute the measurement. 
Now, the problem is the capability of these 

measurements to distinguish coefficients may be 
different from the conclusion in [2] because we employ 
measurements in SFLCT domain. Thus, we use root 
mean square error (RMSE) to evaluate the performance 
of focus measurements when we know the focalized 
and clear image, also called reference image. 

RMSE is defined as 
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( ) ( )( )2

1 1

, ,
M N

i j
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M N
= =

−
=

×

∑∑
         (3) 

where R and F are reference image and fused image 
respectively, with size M×N pixels. 

In order to compare these measurements equally, 
they are evaluated in form of window with save size, 
which means measurement of neighboring coefficients 
are summed up. In this experiment, Fig.3 (a) are (b) are 
source images with size 256×256, and Fig.3(c) is the 
reference image. RMSE performances of these 
measurements are compared in Tab.1. It shows that 
RMSE of SML-based fusion method is the lowest one, 
which means using SML as the measurement in the 
SFLCT domain could produces best fused result for 
multifocus image fusion. In our other experiments, we 
get the same results and do not present them here due to 
the limit of paper length. Thus, not only SML is proved 
to be the best measurement in spatial domain [3], but 
also SML is very efficient in the SFLCT domain. 
Therefore, it is reasonable to use SML to select the 
coefficients in the SFLCT domain. 

   
(a)         (b)          (c) 

   
(d)                 (e) 

Fig.3 Multifocus source images and high-frequency 

subbands.(a)reference image, (b) blurry source image,(c) 

good-focus source image, (d) and (e) are the one of the 

high-frequency subbands of (b) and (c) with the same direction 

and scale in the SFLCT domain, respectively. 

Tab.1  RMSE Performance of different measurements 
Measurement EOG EOL Tenengrad SF SML 

RMSE 2.0391 2.0233 2.0977 2.0686 1.9502

Suppose ( ), ,l kI i j and ( ), ,l k
FI i j denote the 

coefficient of source and fused images according to the 
same location while ( ),

1 ,l kSML i j and 

( ),
2 ,l kSML i j denote the SML measurement of 

( ), ,l kI i j and ( ), ,l k
FI i j , respectively, the proposed 

SML-based fusion rule can be described as follows: 

( )
( ) ( ) ( )
( ) ( ) ( )

, , ,
1 1 2,

, , ,
2 1 2

, , : , ,
,

, , : , ,

l k l k l k
l k
F l k l k l k

I i j if SML i j SML i j
I i j

I i j if SML i j SML i j

⎧ ≥⎪= ⎨
<⎪⎩

  (4) 

It means coefficients with maximum SML 
measurement are selected as the coefficients of the 
fused image when subbands are compared in the 
CS-SFLCT domain. We name this fusion rule as 
SML-max rule and name the proposed fusion method as 
CS-SFLCT-SML for simplicity. 

 

4 Experimental Results 
In this section, CS-SFLCT-SML algorithm is utilized 

to combine multi-focus images. Decomposition 
parameter of contourlet, SFLCT and CS-SFLCT are all 
set as [2,3,3,4,4] in the DFB stage decomposition. In 
the following experiments, four pairs of multifocus 
images are used as the source images shown in Fig.4. 

    
(a)          (b)           (c)          (d) 

    
(e)          (f)           (g)          (h) 

Fig.4 Source images for multifocus fusion. (a) and (b),(c) and 

(d),(e) and (f),(g) and (h), are the pairs, which are partly 

defocused and partly in good-focus. 

In order to show the advantages of the new method, 
we establish four steps to demonstrate that the proposed 
CS-SFLCT-SML outperforms other fusion methods. 
First, CS-SFLCT is compared with original contourlet 
(OCT), cycle spinning original contourlet (CS-OCT) 
and SFLCT to show the advantage of suppressing 
pseudo-Gibbs phenomena around singularities. Second, 
the influence of shift arranges on fusion performance 
are analyzed. Third, SML-max rule is compared with 
Coeffs-max rule. Finally, CS-SFLCT-SML is compared 
with other typical fusion methods based on block-based 
spatial SML method [3], shift-invariant wavelet method 
using Coeffs-max rule (SIWT-max) [2] [16], cycle 
spinning wavelet method [16] [17] using maximum rule 
(CS-WT-max). 

In experiments, besides visual appearance 
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observation, mutual information (MI) [18] and QAB/F 
[19] are employed as information-based objective 
criteria. The reason is that image fusion aims at 
combining information and these criteria do not require 
the information of ideal fused image. MI essentially 
computes how much information from source images is 
transferred to the fused image, while QAB/F measures 
the amount of edge information transferred from the 
source images to the fused images using a Sobel edge 
detector. 

4.1 Suppress pseudo-Gibbs phenomena using 

CS-SFLCT 

In this section, the original contourlet and SFLCT, 
which both lack shift-invariance and easily result in 
pseudo-Gibbs phenomena around singularities, e.g. 
edges, are compared with CS-OCT[8][14] and 
CS-SFLCT proposed in this paper, which both employ 
the cycle spinning to overcome the pseudo-Gibbs 
phenomena, in image fusion. Shift arranges of CS-OCT 
and CS-SFLCT is set as X=Y= {-1,-2,-4,-8,1,2,4,8}. In 
transform domain, typical average and Coeffs-max 
rules are adopted in the low-frequency and 
high-frequency subbands. 

Tab. 2 shows the comparison on objective criteria 
using different forms of contourlet for image fusion. It 
indicates CS-OCT obtains greater MI and QAB/F than 
OCT while CS-SFLCT obtains greater MI and QAB/F 
than SFLCT. The objective criteria of CS-SFLCT are 
the greatest among the four forms of contourlet. So, 
cycle spinning could lead contourlet transforms to 
transfer more information to the fused image and 
CS-SFLCT performs best. 

Fig.5 depicts the visual appearance of fused images 
shown in Fig.4 (a) and Fig.4 (b). Because source image 
Fig.4 (a) is clear in the labeled part, so the lower residue 
features in the difference images, which are gotten by 
subtracting Fig.4 (a), means the better the contourlet 
transform transfer features of source images to fused 
images. Especially, blurry edges, presented in the 
zoomed out parts, show the pseudo-Gibbs phenomena 
which reduces visual quality of the fused images. One 
can see blurry edges of CS-OCT are less than those of 
OCT while CS-SFLCT obtains less blurry edges than 
SLFCT. Thus, cycle spinning is a good way to 
compensate pseudo-Gibbs phenomena when 

shift-variant contourlet are used. This conclusion is 
consistent with objective criteria shown in Tab. 2. 

Further more, the greatest values of MI and QAB/F 
and the least blurry edges presented in the zoomed out 
part of difference image in Fig.5 (h) demonstrate that 
CS-SFLCT is the best contourlet transform for image 
fusion among the four forms discussed in this section. 

Tab 2. Comparison on objective criteria using different 

forms of contourlet in image fusion.   

Images Criteria OCT CS-OCT SFLCT CS-SFLCT

MI 5.9159 6.4528 6.4590 6.5545 Fig.4 (a) and (b)

QAB/F 0.6079 0.6532 0.6552 0.6628 

MI 4.8757 5.3899 5.4064 5.4849 Fig.4 (c) and (d)

QAB/F 0.6443 0.6851 0.6888 0.6953 

MI 5.1597 5.7224 5.7429 5.8703 Fig.4 (e) and (f)

QAB/F 0.6131 0.6598 0.6635 0.6734 

MI 6.1247 6.5997 6.5550 6.6752 Fig.4 (g) and (h)

QAB/F 0.7111 0.7571 0.7507 0.7581 

 

  
(a)                      (b) 

  
(c)                      (d) 

  
(e)                      (f) 



第 X 期       7 

  
(g)                     (h) 

Fig. 5 Surpess the pseudo-Gibbs phenomena using cycle 

spinning. (a), (b), (c) and (d) are fused results using OCT, 

CS-OCT, SFLCT and CS-SFLCT respectively. (e), (f), (g) and 

(h) are the difference image which (a), (b), (c) and (d) minus 

the source image shown in Fig.4 (a). 

4.2 The influence of shift arranges on fusion 

performance 

Since the shift arrange would affect the performance 
on remedy pseudo-Gibbs phenomena, we will test 
objective criteria performance versus different shift 
arranges in this section. Fig.4 (a) and (b) are fused as 
the example here. We set { }max4,8,12, ,X Y x= =  

and the maximum shift arranges is changed from 
4-pixels to 512-pixels distance with max 4 ,x i=  

1, 2,3, ,128i = .  

Objective criteria shown in Fig.6 indicate that MI and 
QAB/F increases quickly when maximum shift arrange   

maxx is small. However, objective criteria nearly do not 

improve when maxx  reaches a certain constant, for 

example max 32x =  in this experiments for fusing 

Fig.4 (a) and (b) with 512 512×  size. Though QAB/F 
curve changes slightly when maxx is larger than 32, but 

the value of QAB/F only changes from 0.6595 to 0.6605. 

So, we only need 32 84 =  times shift on X and Y 

dimensions to suppress the pseudo-Gibbs phenomena 
very well. Thus, cycle spinning is an efficient and 
simple way for image fusion to overcome the 
shift-variance of SFLCT. 
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Fig.6 Objective criteria versus shift arrange using CS-SFLCT in 

image fusion. (a) mutual information curve, (b) QAB/F curve. 

4.3 SML-based Fusion Rule in CS-SFLCT domain 

In this section, we will show why SML-based fusion 
rule could improve the fusion performance. SML-max 
rule and Coeffs-max rule are compared on 
high-frequency subbands in the CS-SFLCT domain 
with shift arranges X=Y= {-1,-2,-4,-8,1,2,4,8}. We take 
labeled parts of Fig.4 (e) and (f), as the example to 
easily understand why SML-max rule could improve 
the fusion performance. 

Fig.7 (a) and (b) shows the high-frequency subbands 
in CS-SFLCT domain. One can see that values of 
coefficients in the clear part are greater than those of 
blurry part. That is why typical Coeffs-max is used in 
MSD-based fusion methods. 

Fig.7 (c) and (f) shows the decision maps in which 
the white color indicates coefficients are selected from 
Fig.7 (a), otherwise selected from Fig.7 (b). Since 
labeled part of Fig.4 (e) is clearer than that of Fig.4 (f), 
the optimal decision map would be in white color in the 
whole decision map, which means all coefficients 
should be selected from Fig.7 (a), which is a high 
subband of Fig.4 (e). 

However, decision map of Coeffs-max rule, shown in 
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Fig.7 (c), indicates that this rule does not select the 
coefficients from the clear part completely. And if we 
evaluate the high-frequency subbands with SML, 
considering regional information and gradient energy, 
more coefficients are selected out from clear source 
image. The decision map is shown in Fig.7 (f). As a 
result, fused image is more like the good-focus source 
images using SML-max rule, rather than using 
Coeffs-max rule. This conclusion is also evidenced in 
Tab.3 which shows SML-max rule obtains greater 
objective criteria than Coeffs-max rule. 

   
(a)               (b)               (c) 

   
(d)               (e)               (f) 

Fig.7 Comparisons on SML-max and Coeffs-max rules. (a) and 

(b) are one high-frequency subbands of the labeled part in 

Fig.4(e) and Fig.4 (f), (d) and (e) are SML values of (a) and (b), 

(c) and (f) are decision maps of SML-max and Coeffs-max 

rules, respectively. 

Tab.3 Comparison on objective criteria using SML-max and 

Coeffs-max rules in image fusion. 

Images Criteria Coeffs-max SML-max

MI 6.5545 6.7401 Fig.4 (a) and (b) 

QAB/F 0.6628 0.6754 

MI 5.4849 5.5468 Fig.4 (c) and (d) 

QAB/F 0.6953 0.7051 

MI 5.8703 6.1716 Fig.4 (e) and (f) 

QAB/F 0.6734 0.6992 

MI 6.6752 6.8646 Fig.4 (g) and (h) 

QAB/F 0.7581 0.7727 

4.4 Comparisons on typical fusion methods 

In this section, block-based spatial SML methods 
with 8×8 blocks(BBS-SML)[3], shift-invariant 
wavelet using maximum rule(SIWT-max)[2][16],cycle 
spinning form of wavelet using maximum 
rule(CS-WT-max) [16][17]  and the proposed method 
CS-SFLCT-SML are compared. In CS-DWT-max and 
CS-SFLCT-SML, shift arrange is set as X=Y= 
{-1,-2,-4,-8,1,2,4,8} and decomposition level is 5. In 
order to show the influence on the fused image, no 

majority filter is used for selecting pixels or 
coefficients. 

Fig.8 shows the fused results using typical fusion 
methods. Obviously, fused image of BBS-SML presents 
block effect. Though BBS-SML obtains greatest 
objective criteria shown in Table 4, block effect is fatal 
and reduce the image quality for image fusion because 
image fusion serves for human and machine perceptions. 
Though one may use majority filter as the remedy to 
improve the performance, block effects could only be 
suppressed to a certain degree but not completely, 
particularly when pixels of block are partly clear and 
partly blurry. MSD transform can successfully 
overcome this disadvantage because coefficients in 
subbands, not pixels in spatial domain, are considered 
as image details and selected out to compose fused 
images. This is why many researchers would like to use 
MSD in image fusion. In addition, SIWT-max and 
CS-WT-max methods result in blurry around edges, 
especially in the labeled parts shown in Fig.8 (b) and (c). 
And the proposed CS-SFLCT-SML presents the best 
visual appearance. 

  
(a)                 (b) 

  
(c)                 (d) 

Fig.8 Comparison on visual appearance using different typical 

fusion methods. (a)-(d) are the fused image using block-based 

spatial SML methods, shift-invariant wavelet, cycle spinning 

wavelet and the proposed CS-SFLCT-SML methods, 

respectively. 

 

Tab.4 Comparison on objective criteria using typical fusion 

methods. 
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Images Criteria BBS- 

SML 

SIWT- 

max 

CS-WT- 

max 

CS-SFLCT-

SML 

MI 8.7882 6.4409 6.4195 6.7401 Fig.4 (a) 

and (b) QAB/F 0.7216 0.6829 0.6595 0.6754 

MI 8.1046 4.9494 5.2684 5.5468 Fig.4 (c) 

and (d) QAB/F 0.7243 0.7098 0.6921 0.7051 

MI 8.0882 5.7311 5.7124 6.1716 Fig.4 (e) 

and (f) QAB/F 0.7332 0.6752 0.6702 0.6992 

MI 8.3287 6.3964 6.5282 6.8646 Fig.4 (g) 

and (h) QAB/F 0.7695 0.7464 0.7563 0.7727 

 

4 Conclusion 
In this paper, a sharp frequency localization 

contourlet transform (SFLCT) is introduced to image 
fusion and cycle spinning (CS) is adopted to improve 
performance on suppressing the pseudo-Gibbs 
phenomena in image fusion. Furthermore, for 
multifocus images, typical measurements in the spatial 
domain are introduced into contourlet domain and 
their capabilities to distinguish coefficients from clear 
or blurry parts of images are compared. 
Sum-modified-Laplacian (SML) is evidenced as the 
best measurement thus we propose the SML-based 
fusion rule in SFLCT domain. Experimental results 
demonstrate that the proposed CS-SFLCT-SML fusion 
method outperforms block-based spatial SML method, 
typical cycle spinning wavelet and shift-invariant 
wavelet methods, and typical cycle spinning 
contourlet methods. 
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