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Abstract: Reducing the acquisition time is important for clinical magnetic resonance imaging 

(MRI). Compressed sensing has recently emerged as a theoretical foundation for the 

reconstruction of magnetic resonance (MR) images from undersampled k-space measurements, 

assuming those images are sparse in a certain transform domain. However, most real-world signals 

are compressible rather than exactly sparse. For example, the commonly used 2D wavelet for 

compressed sensing MRI (CS-MRI) does not sparsely represent curves and edges. In this paper, 

we introduce a geometric image transform, the contourlet, to overcome this shortage. In addition, 

the improved redundancy provided by the contourlet can successfully suppress the pseudo-Gibbs 

phenomenon, a tiresome artifact produced by undersampling of k-space, around the singularities 

of images. For numerical calculation, a simple but effective iterative thresholding algorithm is 

employed to solve 1l  norm optimization for CS-MRI. Considering the recovered information and 

image features, we introduce three objective criteria, which are the peak signal-to-noise ratio 

(PSNR), mutual information (MI) and transferred edge information (TEI), to evaluate the 

performance of different image transforms. Simulation results demonstrate that contourlet-based 

CS-MRI can better reconstruct the curves and edges than traditional wavelet-based methods, 

especially at low k-space sampling rate.  
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1. Introduction 

Undersampling k-space is a good way to speed up magnetic resonance imaging (MRI). However, 

undersampling often violates the Nyquist sampling rule, resulting in artifacts in reconstructed 

magnetic resonance (MR) images. Consequently, improving the resolution and suppressing 

artifacts are interesting and significant topics in undersampled MRI.  

Up to now, undersampled MRI methods can be roughly classified into two categories, which 

exploit the redundancy in either k-space (e.g. using partial-Fourier [1] or following non-Cartesian 

trajectories to sample k-space [2-4]) or in the time domain. The latter is mainly focused on three 

dimensional MRI movies. These two types of methods are often used jointly, as the case of k-t 

sense [5,6].  

MRI maps the spatial information, e.g. spin density, into the called k-space measurements 

with a finite Fourier integral, and the image is most commonly reconstructed by applying the 

inverse Fourier transform on these measurements. So, MR image reconstruction is linear because 

of the linearity of Fourier transform. However, the reconstruction is considered to be an ill-posed 

problem because one can not get a unique solution owing to finite sampling on a practical MRI 

scanner. When undersampling is applied, there exists more than one solution which fits the limited 

k-space measurements. This also enhances the uncertainty of finding the exact image. However, 

an appropriate image can be obtained with a known deviation from true image function [7]. A 

traditional and fruitful way for reconstructing undersampled MR images is to constrain 

reconstruction by including various prior information of images. A comprehensive review could be 

found in literature [8].  
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The emergence of compressed sensing (CS) theory [9,10] excites great interest in signal 

processing, optimization, inverse problems and medical imaging. The theory provides a 

foundation to reconstruct signals from measurements fewer than what is specified by Nyquist 

sampling rule with little or no information loss. Therefore, it is natural to introduce CS into 

undersampled MRI. Considering the specific requirements of MRI, CS has been applied to MRI 

with impressive reconstruction results in a few specific areas, e.g. 2D MRI [11-13], dynamic MRI 

[14] and so on [15,16]. In this paper, we call these sampling and reconstruction methods CS-MRI 

for short. 

According to the CS theory, two key points need further investigation for undersampled MRI 

with high quality of reconstructed images and much fewer k-space measurements, which are: 

(a) Coherence. CS requires the sampling matrix Φ  to be incoherent with the basis 

dictionary Ψ  which sparsely represents MR image. The lower the coherence is, the less k-space 

measurements one needs. For MRI, Φ  is directly determined by the encoding scheme. For 

example, non-Fourier encoding is applied to reduce the coherence [15]. Parallel MRI is also 

evidenced with lower coherence than traditional imaging schemes [16]. However, reducing 

coherence in traditional Fourier encoding is still an open problem.  

(b) Sparsity. The number of measurements required for exactly recovering signals is 

proportional to K , the number of non-zero entries for a signal , with respect to Ψ . The 

required k-space measurements will be very few if Ψ  can represent MR images sparsely. In 

CS-MRI, total variation (TV) [3,4,13] and wavelets [11,17] are commonly used as sparse 

transforms. TV penalizes local variation in the reconstructed image, while the wavelet transform 
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enforces point singularities and isotropic features. Both of them can greatly suppress the artifacts 

generated by undersampling the k-space. 

Most real-world signals are not exactly sparse in any orthogonal basis, however, most 

common signals are compressible [18,19]. For example, the MR images of brains often contain 

curves and edges. TV and wavelet may fail in recovering some of these features. TV penalizes 

oscillation of texture, thus resulting in loss of texture [17,20]. 2D wavelet fails in recovering these 

features from a small number of measurements due to the shorthand in representing curves and 

edges [21,22]. Therefore, it is desirable to employ more effective sparse transform considering 

specific image features for CS-MRI. 

In recent years, some geometric image transforms have been proposed for sparse image 

representation. In this paper, focusing on recovering the curves and edges, we introduce one of 

these transforms, namely the contourlet transform [22], into CS-MRI. To further improve the 

sparsity, we increase the redundancy of the contourlet transform. One reason that we turn to 

redundant representation is the desire to have the shift variance property [23]. This property can 

overcome the pseudo-Gibbs phenomenon around singularities, e.g. blurring in edges, thus 

improving the image quality of undersampled MR images [24]. For numerical computation of 

reconstruction, a simple but effective iterative thresholding algorithm, which has not been used in 

CS-MRI before, is employed in this paper. We analyze the convergence of iterative thresholding 

by introducing objective criteria to evaluate the performance of CS reconstruction. 

In the rest of this paper, a brief introduction of CS-MRI is given in Section 2. The theoretical 

foundation of contourlet-based CS-MRI and the iterative thresholding algorithm is presented in 

Section 3. In Section 4, objective criteria and simulation results are discussed. Finally, the 
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conclusion is given in Section 5. 

 

2. Compressed sensing for MRI 

The Compressed sensing (CS) proposed by Candès et al. [9] and Donoho [10] is a new sampling 

and compression theory. Its main idea is that a signal can be exactly or approximately recovered 

from highly incomplete measurements if the signal is sparse in a certain domain.  

Suppose that signal  is sampled by a sensing matrix M NΦ , then the 

measurements  of x  are 

1 1M M N N  y Φ x . 

If M N , it seems hard to recover x  by solving the underdetermined system of equations. 

According to the CS theory, under the assumption that x  can be sparsely represented in 

transform Ψ  domain and α  is the coefficient with respect to Ψ , x  can be presented as  

x Ψα  

The sparsity is often expressed as  

 

where 
0

α denotes the 0l  quasi-norm and is defined as  0
# 0, 1, 2, ,i i I  α   

which counts the nonzero entries in α  with the length I .Ψ  and *Ψ  mean the inverse and 

forward sparse transforms, respectively.  

CS tries to reconstruct the signal from undersampled measurements by minimizing 0l  

norm optimization. Letting α̂  denote the estimation of α , the 0l  norm optimization is 

0
ˆ min

α
α α , . .s t y= ΦΨα　  

However, the 0l  norm is known to be intractable and sensitive to noise [9,10], so 1l  norm 
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convex optimization is commonly used in CS to recover x  

1
ˆ min

α
α α , . .s t y ΦΨα　                         (1) 

where 
1

α denotes the 1l  norm, i.e. the sum of absolute values of vector elements 

 1, 2, ,i i I    , and is defined as 
1

1

I

i
i




α . The recovered signal x̂  is equal toΨα . 

For MRI, continuous spatial information  x r , e.g. spin density, is often represented as the 

sum of N  voxels in a discretized form [7,15] 

   
1

N

n n
n

x x 


 r r r  

where   r  is the voxel basis function (typical choices include Dirac and box functions) and the 

nr  vectors specify the voxel grid. Therefore, the vector form of  x r  can be expressed as 

1 1 2[ , , , ]T
N n Nx x x x x    

Then the spatial information is then mapped into the so called k-space measurements  y k  with 

a finite Fourier integral as 

     (2) 

where the integration is performed on the plane  for the two dimensional MR image and 

 my k  is the value at the m th k-space location mk . Thus,  y k  can be expressed as the 

vector as 

       1 1 2[ , , , ]T
M m My y y y y k k k k   

If the M N  encoding matrix Φ  is defined as 

  2
,

mi
m n n e d   k rΦ r r r  

then Equation (2) can be written in matrix form as 

1 1M M N N  y Φ x                             (3) 

where  1 2, , ,
T

My y yy   is the data vector  and  1 2, , ,
T

Nx x xx   is the vector 

of voxel coefficients .  
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For CS-MRI, the encoding matrix Φ  is denoted as the undersampled Fourier transform 

operator uF  to avoid the ambiguity expression with other applications of CS. uF  directly relies 

on the sampling scheme. M N  means that the acquired k-space samples is incomplete, 

therefore there exists more than one solution to fit for Equation (3).  

According to Equation (1), the reconstructed MR image is estimated by solving the 

constrained optimization problem under the assumption that x  can be sparsely represented in 

transform Ψ  domain, 

1
ˆ min . . us t

α
α α y F Ψα,　 　 =                          (4) 

The reconstructed MR image is ˆˆ x Ψα . Since y  is a complex vector, α̂  and x̂  are 

complex too. However, since y  is often contaminated by noise, one needs to estimate the 

minimal 
1

α 　 by solving the equation 

1 2
ˆ min . . us t   

α
α α y F Ψα,　                       (5) 

The notation  stands for 2l  norm defined as 

1

22

2
1

I

i
i

m


 
  
 
m  where I  is the total 

number of elements of m .   controls the fidelity of the reconstruction to the measured 

k-space samples. The solution α̂  has a small 1l  norm to enforce the sparsity and fits the data 

up to a tolerance  . 

Ingrid et al [25] proved that generalizing Tikhonov’s regularization method from the 2l  norm 

penalty case to the 1l  norm penalty provides a proper regularization method for an ill-posed 

problem y Φx  as 

2

2
1

ˆ min
I

p

i i
i

 


  
α

α y ΦΨα                      (6) 

where i  is the thi  element of vector α  with length I  in orthonormal basis Ψ ,  e.g. 
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wavelet basis. i  is the weight for i . The notation 
p

i  stands for thp  power of the 

absolute value of i . 

For the special case when 2p   and i  is some positive constant i  , Equation (6) 

reduces to the standard Tikhonov regularization equation 

2 2

2
1

ˆ min
I

i
i

 


   
α

α y ΦΨα                      (7) 

where   gives the trade off between the data fidelity and 2l  norm of vector α .  

Compared with the standard Tikhonov regularization in Equation (7), the generalized 

Tikhonov regularization in Equation (6) puts a lesser penalty on only a few large entries of α , 

and a higher penalty on many small entries of α . Thus, the second term in Equation (6) 

promotes sparsity of the expansion of x Ψα  with respect to the orthonormal basis Ψ . For 

the special case 1p  , the generalized Tikhonov regularization becomes the unconstrained form 

of 1l  norm optimization in compressed sensing [11]. 

3. Iterative thresholding CS-MRI based on contourlet transform 

3.1 Compressible CS-MRI 

Compressed sensing works well when the signal is exactly sparse. Suppose an ideal MR image 

(or MR image reconstructed from fully sampled k-space) is , CS could work efficiently 

if the MR image is sparse with respect to the forward transform *Ψ , which means  

 

However, most real-world signals are not exactly sparse in any orthogonal basis but compressible 

[18,19]. As a widely used image sparsifying transform, the wavelet transform has great success 

in representing point singularities, including for CS-MRI [11,18]. Unfortunately, the traditional 

2D wavelet is a tensor-product of the 1D wavelet. It is a separable extension from the 1D basis. 
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Thus, it is not good at representing curves [21,22]. The representation of curves by the 2D 

wavelet is just compressible, i.e. satisfying the power law decay if the image is constructed from 

the k  largest magnitude coefficients in the wavelet domain. 

The contourlet transform was recently pioneered by Do and Vetterli [22]. Compared with 

the wavelet transform, it provides a flexible rather than fixed number of directions at each scale 

and thus can capture the intrinsic geometrical structure of images. Unlike the curvelet [21], 

which is another geometric image transform initially developed in continuous domain and then 

discretized for sampled data, the contourlet is constructed directly in a discrete domain and 

enjoys low computing complexity. It requires  O N  operations for N-pixel images [22]. Thus, 

the contourlet can be easily implemented for MR images. Furthermore, the iterated filter banks 

algorithm in the contourlet transform allows one to choose different filters to represent the 

features of MR image. We adopt a sharp frequency localization contourlet (SFLCT) [26] that 

outperforms the original contourlet [22]. The new contourlet successfully cancels the aliasing 

components outside the desired trapezoid-shaped support. As is shown in Figure 1, it employs a 

new multiscale pyramid with different sets of lowpass and highpass filters for different levels. 

In contrast with the nonsubsampled contourlet [27] to obtain fully shift-invariant property at 

the price of large time consumption, SFLCT is a semi-redundant contourlet transform. It only 

increases the redundancy in the lowpass filter because the pseudo-Gibbs phenomenon of original 

contourlet [22] is mainly induced by downsampling in the lowpass filter  0L   [26,27]. Lu et 

al designed the lowpass filter  0L   to cancel aliasing component in images. The 1D forms of 

 0L   and  1L   [26] is  
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where   , 0,1i  , ,p iw  is the passband frequency and ,s iw  is the stopband frequency. 

In addition, the iterative decomposition structure of SFLCT, shown in Figure 1, provides us 

an opportunity to easily handle the redundancy of the contourlet. For example, if we do not 

downsample the lowpass filter  0L  , the redundancy of contourlet is 2.33. If we downsample 

the lowpass filter  0L   by setting ↓(d,d) =↓(2,2) where d is the downsampling parameter 

that determines the redundancy of contourlet, the redundancy of the contourlet is 1.33 [26]. 

Consequently, SFLCT is a good choice for practical CS-MRI to easily control the redundancy 

and reduce the computing complexity. For simplicity, the contourlet mentioned in the rest of this 

paper refer to SFLCT. 

Figure 2 shows the basis elements of wavelets and contourlets. The wavelet basis has only 

three directions while the contourlet basis is anisotropic and has arbitrary directions (commonly 

 2 5m m  ). Equipped with these bases, the contourlet requires fewer coefficients to represent 

curves of MR images than the wavelet does.  

For a 2D piece-wise smooth image x  with twice continuously differentiable discontinuities 

(called 2C  singularities) [29], if we keep the k  largest magnitude terms in the bases, the 

optimal approximation rate of the contourlet [22] achieves  

 2 2

2
ˆ k O k  x x  

For wavelets, the error decay rate [21,22] is  

 2 1

2
ˆ k O k  x x  
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According to the CS theory, if we make the number of measurements  for a 

compressible signal , the solution x̂  to Equation (4) has the same error decay as does 

ˆ kx  [28] 

 2
ˆ r

M O k  x x                           (8) 

which means that the reconstruction error is proportional to the power law decay rk  . By using 

the contourlet as the sparse transform for an object with 2C  singularities, the reconstruction 

error ( 2k  ) attenuates faster than that of wavelets ( 1k  ) when 1k  . It implies that when an 

image contains more curves, the reconstruction error of the contourlet is lower than that of the 

wavelet from undersampled k-space. That is why we use the contourlet as the geometric 

transforms in this paper.  

Aiming to recover the curves with less error and to control the redundancy of transforms 

easily, we select the SFLCT as the sparse transform for CS-MRI in this paper. 

 

3.2 Numerical calculation  

Many scientists seek for simple and fast algorithms to solve Equation (1), such as the conjugate 

gradient method [11], Bregman iteration [17], the interior point method [30] and other methods. 

However, these methods are not straightforward in solving the problem of constraint 1l  norm 

optimization of CS [11,30]. In this paper, we employ iterative thresholding [25, 31-36], a simple 

but effective algorithm, which has never been reported in CS-MRI to solve Equation (5). The 

Iterative thresholding algorithm directly cancels the interference caused by undersampling the 

k-space [11], and has been recommended to solve CS problems [34].  

The classic interpretations of iterative thresholding for solving constraint 1l  norm 
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optimization were reported previously [25,32].  For theoretic analysis, Herrity et al employed 

hard iterative thresholding to demonstrate that one could recover the k-term representation of the 

original signal up to any prescribed error tolerance under certain conditions [33]. Their simulation 

results showed that soft iterative thresholding performed better than hard thresholding. Bredies 

and Lorenz proved that soft iterative thresholding converged with a linear rate once the underlying 

operator satisfied the finite basis infectivity property or the minimizer possessed a strict sparsity 

pattern [31]. In addition, only two free parameters, which are independent of transforms, must be 

set in iterative thresholding algorithm. It allows convenient comparison among different 

transforms.  

Inspired by the work of those authors and the convenience of iterative thresholding, we apply 

soft iterative thresholding to solve CS-MRI. It is defined as follows: 

    0
i i

i i

i i

S

   
  

   

  
 
  

                        (9) 

where  1, 2, ,i i I    is the thi  entry in α . Since α  is a complex vector for MR images, 

we use the complex thresholding operator defined as    jw jw
i iS e S e   . For simplicity, 

let  S α  denotes the soft thresholding operation that performs on all the entries of α  with the 

same threshold   according to Equation (9).  

Different from the sparsity constraint denoising problem presented in [32], we aim at 

reconstructing MR images from undersampled k-space, so we need to modify the iterative 

thresholding algorithm. For simplicity, we use A  to stand for uF Ψ  and *
u* *A Ψ F  denotes 

the adjoint transpose of A . Because the contourlet is established by frame theory, *Ψ  means 

the forward contourlet transform, while Ψ  means the inverse transform for CS [36]. 
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The soft iterative thresholding algorithm for CS-MRI can be implemented according to the 

following steps: 

Step 1: Initialization. The coefficients vector 0 [0,0, ,0]Tα  , the reconstructed image 

0 0x Ψα , the residual 0 r y , and the initial threshold  0 0max  *A r  where 

*
u* *A Ψ F  denotes the adjoint transpose of A . The notation *

uF  means to do inverse Fourier 

transform on undersampled the Fourier coefficients 0r  while *Ψ  means the forward contourlet 

transform. 

Step 2: Update the coefficients vector  1 tt t tS   *α α A r  by applying soft iterative 

thresholding according to Equation (9), and the residual 1 1t t  r y Aα . Decrease the threshold 

1t t   , in which  is a decrease factor and typically defined as 0 1  .  

Step 3: Repeat Step 2 until the residual r  satisfies the given stop criteria. Output the 

estimated coefficients α̂  and the reconstructed image ˆˆ x Ψα . 

Since the acquired k-space measurements are often contaminated by noise, the stop criteria of 

iterative thresholding for CS-MRI is directly related to   of Equation (5). In order to eliminate 

the effect of the magnitude of MR images on stop criteria, we change the traditional absolute stop 

criteria into a relative form as  

2

2

ˆ





Aα y

y
                                (10) 

Accordingly, relative residual tR  is defined in a relative form as 

2

2

t
tR




Aα y

y
                               (11) 

Suppose that at the tht iterative time, the final estimated coefficient ˆ ,  if  Rt t  α α . 

With the same meaning as   in compressed sensing in Equation (5), the stop criteria   is 
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set as large if the k-space is corrupted by heavy noise, while   is small for light noise. It is worth 

noting that estimating the noise contained in k-space is very significant. If   is smaller than the 

true noise level, more noise will be presented in the reconstructed image. On the other hand, if   

is larger than the true noise level, image details will be lost since they are taken as noise and 

thrown away. More details will be discussed in subsection 4.2.3. 

In the algorithm,   is adopted to decrease the threshold t  in each iteration, typically 

defined as 0 1  . The smaller   is, the faster   comes to convergence. 

 The two parameters   and   presented in the algorithm are constants, and we set them 

to be the same in all simulations except when we discuss the convergence of soft iterative 

thresholding in subsection 4.2.3. From empirical analysis, 610   and 0.8   assure 

promising results.  

Two factors affecting the computational complexity of the algorithm are iteration times and 

multiplications involving A  and *A . For the former, no nested loop is involved in this 

algorithm, and sufficient tests show that the algorithm approaches the stop criteria after only tens 

of iterations. For the latter, only one multiplication by A  and one by *A  are performed per 

iteration. Simulations in subsection 4.2.3 show that different transforms reach the stop criteria 

after a similar number of iterations, implying that the speeds of different transforms are mainly 

related to the computational complexity of their forward and inverse transforms. 

 

4. Simulation results and analysis 

4.1 Objective performance evaluation 

Objective evaluation of performance of different methods is an important issue. Focusing on 
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the influence of sparse transforms on the curve features and the information of reconstructed 

images, besides the visual appearance, we introduce three objective criteria to evaluate the 

correlation between reconstructed MR images from fully sampled and undersampled k-space. 

They are the peak signal-to-noise ratio (PSNR), mutual information (MI) [37] and transferred edge 

information (TEI) [38]. 

Suppose x  is the fully sampled k-space MR image, x̂  is the solution of Equation (5) and 

the gray value of x̂  is 0 to 255,.  

PSNR is defined as 

10

255
20logPSNR

MSE

   
 

                        (12) 

where     
1 1

2

0 0

1
ˆ, ,

M N

i j

MSE x i j x i j
M N

 

 

 
   . 

MI is defined as 

   
   

ˆ,
ˆ, log

ˆ

p x x
MI p x x

p x p x






                     (13) 

where  ˆ,p x x  is the joint probability distribution and  p   is the marginal probability 

distribution. 

TEI is defined as 

ˆ ˆxx xx
gTEI Q Q                                    (14) 

where ˆxx
gQ   and ˆxxQ

  [38] stand for the edge strength and orientation preservation values. 

PSNR evaluates the difference between the gray values of fully sampled k-space MR image 

and CS-based reconstructed image. MI essentially computes how much information from fully 

sampled k-space MR image is transferred to CS-based reconstructed image. TEI measures the 

amount of edge information that CS reconstructs using a Sobel edge detector which computes the 
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horizontal derivative approximation xG  and vertical derivative approximation yG  with a two 

dimensional convolution operation on image f  as follows: 

1 0 1

2 0 2

1 0 1
xG f

 
    
  

  and 

1 2 1

0 0 0

1 2 1
yG f

 
   
    

 

 

4.2 Simulation results 

In the simulation, we use a binary mask with equal size of k-space to determine which k-space 

measurements are acquired. If the value of mask at location  ,x y  is equal to 1, the 

measurement at location  ,x y  is acquired. The ratio of k-space measurements acquired in 

undersampling, named as sampling rate, is between 0 and 1. We call the binary mask the sampling 

pattern because it directly determines the way to sample the k-space.  

To demonstrate the performance of the contourlet transform and the efficiency of soft 

iterative thresholding, first we will show the weakness of traditional 2D wavelet on representing 

curves in CS-MRI. This shortcoming can be successfully overcome by contourlets. The 

pseudo-Gibbs phenomenon around edges can be suppressed as well by improving the redundancy 

of the contourlet. We will then show the objective criteria at different sampling rates with two 

sampling patterns. Finally, the convergence of soft iterative thresholding will be presented.  

We use Daubechies wavelet with 4 vanishing moments and 4 decomposition levels. SFLCT is 

with decomposition level [5,4,4,3], which means 4 decomposition levels and 5 4 4 32 , 2 ,2 ,2  

directional subbands from coarse to fine scales. One type of quincunx/fan filters named pkva [39], 

which can effectively localize edge direction [40], is employed as a decomposition filter in SFLCT. 

The non-redundant contourlet downsamples the first lowpass filter with factor 2, while the 
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redundant contourlet does not downsample first lowpass filter. Both forms of contourlets use 

critical downsampled directional filter banks. 

 

4.2.1 Overcoming the shortage of the wavelet transform 

In this subsection, parameters of iterative thresholding are 410  , 610   and 

0.8  . 

Figure 3(a) is the Cartesian sampling pattern for reducing the phase encoding time. The 

k-space data are acquired at the locations of white pixels as shown in Figure 3(a) and the other 

k-space data are filled with zeros. The sampling rate is 0.36, which means only 36 percent of 

k-space is acquired. 

Filling zeros into k-space produces curve-like artifacts in Figure 3(c). The Cartesian sampling 

pattern makes the artifacts, commonly evaluated by the point spread function [10,14], spread in 

the zero-filling image. Figures 3(d)-(f) show that CS can suppress these artifacts and obtain clearer 

images. 

The zoom in parts in Figures 3(d) and (e) show that contourlet outperforms wavelet in 

reconstructing the curves of MR image. This conclusion is also demonstrated by the objective 

criteria in Table 1 which implies contourlet can obtain higher TEI than wavelet. 

Just as in image denoising, thresholding coefficients of image transform would induce 

pseudo-Gibbs phenomenon around edges. Improving the redundancy of the transform is a good 

way to suppress these effects. Figures 3(e) and (f) indicate that redundant contourlets can suppress 

the artifacts better than non-redundant contourlets. The objective criteria in Table 1 also 

demonstrate this conclusion. 
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The aforementioned example shows that undersampling the k-space with Cartesian sampling 

pattern will introduce curve-like artifacts. These artifacts tend to be considered as meaningful 

image features, and cannot be sufficiently suppressed by CS. In the view of point spread function 

[11,15] for CS-MRI, a good sampling pattern should be able to make the artifacts look like 

random noise. From this aspect, the variable density sampling pattern, shown in Figure 4(a), 

works well in our empirical simulation. This pattern is also recommended in literature [41]. Figure 

4(c) shows variable density sampling pattern makes the artifacts much like the noise. Though the 

sampling rate is half of that for Cartesian sampling pattern of Figure 3(a), the reconstructed 

images in Figures 4(d)-(f) are much better than those in Figures 3(d)-(f). The zoom in parts in 

Figures 4(d) and (e) show that contourlet can better preserve edge than wavelet. This conclusion is 

also demonstrated by the objective criteria in Table 2. 

 

4.2.2 Contourlet-based CS at different sampling rate  

In this subsection, we will show the performance of different transforms at different sampling 

rates. Parameters of iterative thresholding are 410  , 610   and 0.8  . 

Figure 5 shows the variations of the objective evaluation criteria of CS-MRI versus sampling 

rates for the wavelet and the contourlet in reconstructing the MR image in Figure 3(b). The curves 

in the left column of Figure 5 show the criteria when a Cartesian sampling pattern is applied for 

undersampling and the curves in the right column of Figure 5 show the criteria when a variable 

density sampling pattern is applied for undersampling. 

All criteria indicate that the contourlet can better preserve edges and recover more 

information than the wavelet does, especially at low sampling rates. For example, compared with 
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wavelets, the non-redundant contourlet improves the TEI by 20% at the sampling rates of 0.4 and 

0.2 with Cartesian sampling pattern. The advantage of contourlet holds true for both Cartesian and 

variable density sampling patterns.  

Figure 5 also indicates that, with the increase of sampling rate, the superiority of contourlet 

becomes less obvious. For example, when the sampling rate of Cartesian pattern is above 0.8 or 

that of variable density sampling pattern is above 0.6, the criteria of contourlet and wavelet are 

nearly the same. According to the CS theory, if the sampling rate is sufficiently high and the 

transform can make the image sparse enough, the difference between transforms will only have 

slight effect on the reconstruction performance. However, most real-world signals are 

compressible but not sparse. The reconstruction error is proportional to the decay rate of rk  , as 

shown in Equation (8). For edges and curves, the contourlet has 2r   while the wavelet has 

1r  . This is the reason why we can better reconstruct the edges and curves using contourlet than 

using wavelet in CS-MRI. In addition, a high sampling rate is meaningless for practical MRI 

application since high sampling rate means the reduction of acquired data is insignificant. 

Therefore, it is worthy to seek for geometric image transforms to better reconstruct MR images 

from highly undersampled k-space. A good geometric image transform we pursuit should at least 

enjoy some advantage in recovering certain image features over the others. 

The comparison between the curves in the left and right columns of Figure 5 indicates that 

higher criteria are achieved by variable density sampling pattern relative to Cartesian sampling 

pattern at the same sampling rate. The reason is that variable density sampling pattern makes the 

artifacts look like random noise. This implies that the sampling pattern plays an important role in 

further reducing the measurements in k-space. 
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4.2.3 Numerical convergence of iterative thresholding 

First, we use the objective criteria PSNR, TEI and MI to show the convergence of iterative 

thresholding at different values of the stopping criterion  . Parameters of iterative thresholding 

are 410  , 0.8   and  10 1, 2, ,9l l    . 

At the beginning, the relative noise level   in Equation (10) is set as a constant of 610 . 

We use the variable density sampling pattern with sampling rate 0.15 in Figure 6(a). The 

reconstructed image using the wavelet, the non-redundant contourlet and the redundant contourlet 

are shown in Figures 6(c)-(f). Figure 7(a) shows that with the increased iterations, the relative 

residual tR  in Equation (7) of all the transforms reaches  . Though the image is compressible, 

not rigorously sparse in transform domain, iterative thresholding can recover the representation of 

fully-sampled image up to any prescribed error tolerance, which is consistent with the results for 

k-term sparse signals [33]. If the number of iterations increases, the relative residual tR  will 

decrease, but the objective criteria, shown in Figures 7(b)-(d), tend to go stable and will eventually 

not increase.  

Each transform comes to converge with almost the same speed, though the contourlet comes 

to   slightly faster than the wavelet. Values of PSNR, TEI and MI in Figures 7(b)-(d) show that 

the redundant contourlet obtains the highest objective criteria after the initial few iterations. This 

also demonstrates that the redundant contourlet can give the best reconstructed image, shown in 

Figure 6(f), at low sampling rate in k-space measurements. 

Given a different stop criterion   of iterative thresholding, a large   corresponds to a 

sampled k-space highly corrupted by noise, while a small   corresponds to relatively low noise. 

Figure 8(d) shows that a too large   makes the image too smooth and loses texture. 610    
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is sufficient to preserve image details and suppress the noise very well. Smaller  , e.g. 810  or 

910 , also suppress the noise well because the 1l  norm enforces the sparsity to recover image 

details and noise is not sparse in contourlet domain. However, a smaller   requires more 

iterations. 610   is empirically feasible. The objective criteria shown in Figures 9(a)-(c) 

prove that this conclusion holds since criteria do not improve with the decreasing of   when 

610  . It is obvious that estimating the noise in k-space is very significant for CS-MRI. A 

precise estimation of noise can suppress the noise and preserve image details very well.  

Second, we investigate and report the numerical results with various values of  . The 

sampling pattern in Figure 6(a) and the MR image in Figure 6(b) are employed in simulation.   

is set as 610  .  varies from 0.1 to 0.95. The thi  value of   is 

0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,i  0.95  1, 2, ,10i   .  

Figures 10(a)-(c) show that increasing   leads to higher objective criteria, which means an 

improvement on quality of reconstructed image. However, the improvement is at the expense of 

more iterations in reconstruction, as shown in Figure 10(d). This expense is serious, especially 

when 0.8  . For example, the number of iterations, when 0.9  , is nearly twice as that 

when 0.8  . So, there is a tradeoff between number of iterations and objective criteria.  

Figure 10(e) shows the PSNR versus number of iterations. Each square point corresponds to one 

  as shown in Figure 10(d).  Figure 10(e) indicates that with the increase of  , the gain in 

image quality brought by increasing the iterations becomes slight when 0.8  . This is also the 

case in TEI and MI because their similar relationship with  . So, 0.8   is a good choice 

regarding with both objective criteria and number of iterations. For the sake of very good criteria, 

0.8 0.9   is recommended.  
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5. Discussion and conclusions 

In this paper, a geometric image transform, the contourlet, is introduced into CS-MRI and a 

simple but efficient iterative thresholding algorithm is applied to solve 1l  optimization of 

CS-MRI. Considering the transferred information and edge features, we introduce objective 

criteria to evaluate the performance of different geometric image transforms in CS-MRI. 

Simulation results demonstrate that enforcing the sparsity of the image in the contourlet transform 

domain can better reconstruct the curves of MR images than the traditional wavelet, especially at 

low sampling rates of k-space. Furthermore, improving the redundancy of the contourlet can better 

suppress the blurring artifact in reconstructed MR images. The convergence of iterative 

thresholding algorithm is analyzed in simulations.  

However, most MR images are not sparse in one transform domain. This paper only presents 

how to better reconstruct the curves and edges by applying a geometric image transform. For 

further improvements in reconstructing MR images, combination of multiple transforms which 

sparsely represents different image structures, i.e. constructing redundant basis, is a wise choice 

for CS-MRI. This is one of our future works and the primary results were published in [42] in the 

mean time of revising this paper. Nevertheless, as an emergent sampling and reconstruction 

method for MRI, compressed sensing will have further applications to improve the imaging speed. 
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TABLE CAPTIONS  

Table 1. Comparison on objective criteria of wavelet-based and contourlet-based CS-MRI using 

Cartesian sampling pattern with sampling rate 0.36. 

 

Table 2. Comparison on objective criteria of wavelet-based and contourlet-based CS-MRI using 

variable density sampling pattern with sampling rate 0.20.  
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FIGURE CAPTIONS 

Figure 1. Decomposition structure of sharp frequency localization contourlet (SFLCT).  iD   

and  iL   are the high pass and low pass filter at the thi  decomposition level. The DFB is 

short for directional filter banks.  ,d d  is the down sampling factor for lowpass filter. an is 

the thn  approximation subbands. Refer to reference [25] for the definitions of  iD  ,  iL   

and an. 

 

Figure 2. Basis elements of (a) wavelet and (b) contourlet. Contourlet offers richer set of 

directions and shapes, thus it is more effective in capturing curves and edges than wavelet. 

 

Figure 3. Comparison of wavelet and contourlet reconstruction of undersampled k-space using 

Cartesian sampling pattern. (a) Cartesian sampling pattern with sampling rate 0.36, (b)-(f) are 

reconstructed images from fully sampled k-space, zero-filling k-space, wavelet-based, 

non-redundant contourlet-based and redundant contourlet-based compressed sensing, respectively. 

 

Figure 4. Comparison of wavelet and contourlet reconstruction of undersampled k-space using 

variable density sampling pattern. (a) Variable density sampling pattern with sampling rate 0.20, 

(b)-(f) are reconstructed image from fully sampled k-space, zero-filling k-space, wavelet-based, 

non-redundant contourlet-based and redundant contourlet-based compressed sensing, respectively. 

 

Figure 5. Objective evaluation criteria of wavelet and contourlet for CS MRI with Cartesian 

sampling pattern (left column) and variable density sampling pattern (right column). PSNR, TEI 
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and MI curves are shown in rows from top to bottom. 

 

Figure 6. Comparison of wavelet and contourlet reconstruction of undersampled k-space using 

variable density sampling pattern with low sampling rate 0.15. (a) The variable density sampling 

pattern, (b)-(f) are reconstructed images from fully sampled k-space, zero-filling k-space, 

wavelet-based, non-redundant contourlet-based and redundant contourlet-based compressed 

sensing, respectively.  

 

Figure 7. Objective evaluation criteria of wavelet and contourlet for CS-MRI versus number of 

iterations. (a)-(d) are curves of relative residual, PSNR, TEI and MI, respectively. When 

610  , iterative thresholding stops at 42nd, 44th and 45th iterations for redundant contourlet, 

non-redundant contourlet and wavelet, respectively. 

 

Figure 8. Reconstructed images at different stop criteria using redundant contourlet. (a) variable 

density sampling pattern with sampling rate 0.2, (b) and (c) are reconstructed images from fully 

sampled and zero-filling k-space, (d)-(f) are CS reconstructed images at stop criteria of 410 , 

610  and 810 , respectively. 

 

Figure 9. Stop criteria of iterative thresholding for CS-MRI. (a)-(c) are PSNR, TEI and MI curves 

using variable density sampling pattern with sampling rate 0.2 for the image in Figure 8(b). 

 

Figure 10. Decrease factor of iterative thresholding for CS-MRI. (a)-(c) are PSNR, TEI and MI 
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curves when decrease factor   varies from 0.1 to 0.95, (d) is the number of iterations for 

different decrease factor, (e) PSNR versus number of iterations for corresponding decrease factor 

in (d). 
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Note: DFB stands for directional filter banks. 

Figure 2 

  

(a)                                   (b) 

Figure 3 

   

                       (a)                                      (b)                                        (c) 

   

(d)                                     (e)                                         (f) 



Figure 4 

   

                      (a)                                        (b)                                         (c) 

   

(d)                                         (e)                                         (f) 

Figure 5 

 

(a)                                                              (b) 



 

(c)                                                               (d) 

 

(e)                                                                (f) 

Figure 6 

   

                       (a)                                       (b)                                         (c) 

   



                       (d)                                         (e)                                        (f) 

Figure 7 

 

(a)                                                                 (b)  

 

(c)                                                                   (d)  

Figure 8  

   

(a)                                        (b)                                         (c) 



   

(d)                                        (e)                                          (f) 

Figure 9  

 

(a)                                   (b) 

 
(c) 

Figure 10 



  

(a)                                                              (b)  

 

(c)                                                             (d)  

 

(e)  


	Iterative thresholding compressed sensing MRI based on contourlet transform_Xiaobo Qu_Inverse Problems in Science and Engineering
	Figures_All_color

