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ABSTRACT 

 
Undersampling the k-space is an efficient way to speed up 
the magnetic resonance imaging (MRI). Recently emerged 
compressed sensing MRI shows promising results. However, 
most of them only enforce the sparsity of images in single 
transform, e.g. total variation, wavelet, etc. In this paper, 
based on the principle of basis pursuit, we propose a new 
framework to combine sparsifying transforms in 
compressed sensing MRI. Each transform can efficiently 
represent specific feature that the other can not. This 
framework is implemented via the state-of-art smoothed ℓ0 
norm in overcomplete sparse decomposition. Simulation 
results demonstrate that the proposed method can improve 
image quality when comparing to single sparsifying 
transform. 
 

Index Terms— Sparse decomposition, compressed 
sensing, MRI, medical imaging, multiscale transform 
 

1. INTRODUCTION 
 

Undersampling the k-space is a good way to speed up 
magnetic resonance imaging (MRI). However, this will 
violate the Nyquist sampling rule and results in artifacts. 
Recently emerged compressed sensing [1,2] provides a firm 
foundation to reconstruct signal from fewer measurements 
than the Nyquist sampling rule requests. For the signal 

Nx  that can be represented by K nonzero terms, the 
signal can be reconstructed exactly with overwhelming 
probability when the number of acquired data M  satifies 

logM Const K N   . For a compressible signal Nx , 

the reconstruction error of compressed sensing is 
proportional to the error of approximating image with K 
largest nonzero terms in specific sparsifying transform 
domain.  

Lustig et al first proposed the basic mathematical model 
of compressed sensing MRI (CS-MRI) [3]. However, only 
one sparsifying transform is applied in his model. Diverse 
sparsifying transforms that can sparsely represent different 
types of features of MRI images are discussed in [3] and the 

recommended transform is 2D wavelet. But traditional 2D 
wavelet obtained by tensor products of 1D wavelets is good 
at isolating the point discontinuities, but fails in sparsely 
representing the curve-like image features[4,5]. To 
overcome this shortage, wavelet can be replaced by other 
geometric image transforms, curvelet[4] or contourlet[5,6], 
to sparsely represent curves. But they are not good at 
representing point-like image features. 

Since each transform can only sparsely represent one 
type of features, a combination of them is a good choice. In 
this paper, we combine these sparsifying transforms to 
provide a overcomplete dictionaries. Our method is directly 
inspired by the principle of basis pursuit[7], which tries to 
find an optimal superposition of dictionary elements. For 
compressed sensing MRI, images are reconstructed from 
undersampled k-space data by searching the sparsest 
representation via ℓ0 quasi-norm (it is not exactly a metric) 
minimization.  

Compared with previous work, the advantages of our 
method are: (i) quality of reconstructed image is improved 
by enforcing its sparsity in combined sparsifying transforms; 
(ii) our combined transforms can avoid the bias of selected 
single transforms which may greatly reduce the image 
quality. We only consider noiseless measurements right now. 
 

2. SMOOTHED ℓ0 NORM IN CS-MRI 
 
Compressed sensing is a new theory to reconstruct signal 
from undersampled measurements. Suppose that a noiseless 
signal Nx  is sampled by the sensing matrix 

M N (M<N), the measurements My  of x  are  

1 1M M N Ny x     

Under the assumption that x  can be sparsely represented in 
transform   domain and   is the coefficient with respect 
to  , x  can be presented as  

x    
CS tries to reconstruct the signal from undersampled 

measurements by minimizing ℓ0 norm optimization. Let ̂  
denote the estimation of  , the ℓ0 norm optimization is 

0
ˆ min . .　s t y x


     
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where 

0
  counts the non-zero elements of  α.  

In the field of MRI, the sampling matrix Φ is replaced by 
under-sampling Fourier operator uF , which means partial 

Fourier coefficients are sensed. CS-MRI can be expressed 
as  

0
ˆ min . .　 us t y F x


                   (1) 

where y is the acquired k-space data and x be the image and 
Ψ be the dictionary. 

Because ℓ0 quasi-norm minimization is an NP hard 
problem, it is replaced by its closest linear counterpart, ℓ1 
norm minimization, and the results hold. However, the 
simpler solution is at the cost of increasing the number of 
required measurements for exact reconstruction [1,2,8]. 

A recent work proposed a relaxation that uses continuous 
function to approximate ℓ0 quasi-norm [9] as 

   
2

20
1 1

exp
2

M M
i

i
i i

M f M 


  
 

 
       

 
   

where i  is the thi  element of vector   with length M . 

When smoothed ℓ0 is applied in CS-MRI, we can 
reconstruct the MR images from undersampled k-space by 
solving the following problem 

       arg min . . us t y F x


      

and the reconstructed image is x̂    
Smoothed ℓ0 minimization can reduce the required 

sampling rate to gain expected reconstruction quality with a 
given dictionary. However, it is limited to the sparsity of the 
image. This motivates us to construct a bigger and more 
expressive dictionary to enhance the sparsity of an image in 
it. In this paper, we extend the smoothed ℓ0 approach to 2D 
compress sensing MRI and propose a method using 
combined sparsifying transforms. 
 

3. COMBINED SPARSIFYING TRANSFORMS 
 
As a major approach to solve CS, basis pursuit [7] suggests 
improving the sparsity of signal x  with length N in 
overcomplete waveform dictionaries Ψ=[Ψ1, 
Ψ2,…Ψj…,ΨM]T (M>N). Each waveform Ψj is a row vector 
with length N . Then coefficients 1 1M M N Nx    Ψ  and 

each entry j is the inner product ,j x . MR image can 

be reconstructed from undersampled k-space data via 
finding solution to 

1
arg min . . ux

s t y F x                           (2) 

where 
1

1 1

,
M M

j j
j j

x  
 

    . 

We view Ψ=[Ψ1, Ψ2, …Ψj…,ΨM]T (M>N) as 
concatenation of the subsets { , 1, 2, ,

i
i I   }, where i  

is the indices of waveforms in the thi  subset. 

1 1
1 1 1

, , ,
i

i

M I I

j j
j i j i

x x x   
   

      

This indicates that ℓ1 norm minimization in global 
overcomplete dictionary is equivalent to minimize the sum 
of ℓ1 norm of the dictionary’s subsets. So, (2) can be written 
as  

1
1

arg min , . .
i

I

ux
i

x s t y F x


  

This provides us with an opportunity to recover the MR 
image from union of subsets of waveforms dictionary.  

The model can be extended to ℓ0 norm seamlessly. ℓ0 
norm minimization in global overcomplete dictionary is 
equivalent to minimize the sum of ℓ0 norm of the 
dictionary’s subsets. So, the combined sparsifying 
transforms for ℓ0  norm can be expressed as  

0
1

arg min . .
M

T
j u

x
j

x s t y F x


               (3) 

In this paper, we consider the condition each sub-
dictionary j  comes from commonly used transforms 

which sparsify different types of image features. 
Unfortunately, the matrix of dictionary Ψ and its adjoint 

T are rarely explicitly constructed in memory, e.g. 
curvelet and contourlet. Instead, they are implemented as 
fast implicit analysis and synthesis operators. Let T and T* 
denotes the operator pair, T x Tx   and *T T I . So that 
even if  is a tight frame and it may not be orthogonal, i.e. 

, 0T cI c   , we don’t have to normalize T and T*[10]. 
Furthermore, storing and computation of   is expensive 

because dimension of   is higher than dimension of signal 
x  for overcomplete dictionary. So we apply fast forward 
transform iT  on the image and get another version of (3) 

 
0

1

arg min . .
I

i ux
i

T x s t y F x


            (4) 

This model assumes each transform is regularized, i.e. 
that the ℓ2 norm of the dictionary’s each column equals to 1. 
In practice, the condition is more complicated. An effective 
solution to solve this problem is to enforce the sparsity in 
each transform domain individually. 

For the transforms under consideration, an ideal case is to 
construct an infinite dictionary that contains any possible 
waveform. In this case, if a waveform exactly the same with 
target image is included, such that the image we are to 
reconstruct can be represented with only one coefficient. 
However, this case is obviously unrealistic. Instead, we try 
to find several complement transforms, in other words, the 
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coherence between them is expected to be as low as 
possible, namely the uncertainty principle. The 
Morphological Component Analysis (MCA)[10] framework 
assumes an image x can be composed into several 
components, each component xj can be sparsely represented 
in an associated basis Ψj. For each j, the representation of xj 
in Ψj is sparsest, and in any other Ψi (i≠j), it is not or at 
least not as sparse as another sparsifying transform. 

Considering talents in representing different image 
features and the computing  complexity[5,6], we adopted 
wavelet and an improved contourlet[6] to represent point-
like and curve-like image features respectively. 

 
4. IMPLEMENTATION OF THE COMBINED 

APPROACH 
 

In order to solve equation (4), we extend sigma annealing 
method proposed in [9] to compressed sensing MRI with 
combined sparsifying transforms.  

Without loss of generality, suppose we have K different 
sparsifying transforms combined. When minimizing the 
coefficients in the transform domain of kT , which consist in 

the thk  subset of the global overcomplete dictionary,  we 
assume the coefficients corresponding to other transform 
domains are fixed. Theoretically, the order of transforms is 
arbitrary as long as we traverse all the selected transforms in 

 | 1, 2, ,kT k K  . During the calculation process, we 

keep projecting the coefficients back onto the feasible set so 
that the data consistency is ensured. 

Given an annealing sequence of  1 2, , , J   , we 

minimize smoothed ℓ0 norm iteratively for each σ with 
general gradient descent method. In implementation of 
smoothed ℓ0 norm, value of σ at 1j +  iteration is 

1j jd     ( 0 1d< <  ). A decreasing sequence of 

sigma is carefully selected and the minimization of 
smoothed ℓ0 norm is roughly calculated for each sigma in 
the sequence. Simulations in [9] demonstrate the smoothed 
ℓ0 norm algorithm converges fast. In [8] [4], the authors 
proposed to solve the Lagrange form of (1). But as 
mentioned before, the equivalent dictionary of some 
geometric transform’s fast algorithm is not regularized, i.e. 
the ℓ2 norm of each column is not equal to 1. So we had 
better force the sparsity of image in each transform domain 
individually and keep projecting the results back to feasible 
set after each optimization step.  

The reconstruction algorithm with smoothed ℓ0 norm and 
combined sparsifying transforms (SL0-CST) is as follows 

 
Algorithm 1 Reconstruction algorithm with smoothed ℓ0 
norm and combined sparsifying transforms 

Initialization: 
1) Let 0x  be the minimum ℓ2 norm solution of y A  

obtained by pseudo-inverse of A. 
2) Choose a suitable annealing strategy for  and get its 

sequence 1 2, , , , ,j J       . 

Main Loop: 
for j=1,2,…,J 
       Set j  , ˆ jx x  

for k = 1,2,…,K, where K is the number of transforms 
employed.. 

1) k k x  ; 

2) 
2

exp
2

k
k kg





   
 

 

3) k kx x t g    with step length t  

4) *( )u ux x F F x y   where   controls the data 

consistency and 1   by default. 
end for 
Set ˆ jx x  

end for 
Final answer ˆ ˆJx x  

 
5. SIMULATION RESULTS 

 
To validate the performance, the proposed method is 

compared with the nonlinear conjugate (CG) ℓ1 norm when 
single and combined sparsifying transforms are employed 
[11]. Parameters of nonlinear conjugate ℓ1 norm are the 
same as [11]. Parameters of smoothed ℓ0 norm are set as 
decay factor d  of σ is 0.5 and the stop criteria, smallest σ, is 

410- . The limitations of outer and inner iterations are 50 
and 5. Besides the visual appearance, peak signal-to-noise 
ratio (PSNR) is served as objective criteria and defined as 

10

255
20logPSNR

MSE

 
  

 
 

where     2

1 1

1
ˆ, ,

QP

p q

MSE x p q x p q
P Q  

 
    and  ,p q  

is pixel location of a P Q  image. x̂  is the reconstructed 

image and x  is reconstructed image from fully sampled k-
space data. PSNR evaluates the difference in gray values 
between x̂  and x . 

We adopt the variable density sampling pattern, shown in 
Fig.1 (b), to acquire 15% of k-space data. The reconstructed 
curves via contourlet are much clearer than those of wavelet. 
No matter in the ℓ1 norm or ℓ0 norm, combined sparsifying 
transforms can improve the image quality than single 
transform. Due to the approximation of ℓ0 norm, smoothed 
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ℓ0 norm with combined sparsifying transforms obtains the 
best results. This conclusion is in accordance with the 
PSNR performance in Table 1. 

  
(a) original image       (b) sampling mask 

  
(c) CG+WT                (d) SL0+WT 

  
(e) CG+CT              (f) SL0+CT 

  
(g) CG+WT+CT       (h) SL0+WT+CT 

Figure 1. Comparisons on reconstructed images. CG 
denotes nonlinear conjugate ℓ1 norm and SL0 denotes 

smoothed ℓ0 norm, CT means contourlet and WT means 
wavelet.  

 
Table 1. PSNR performance 

Types of norm Sparsifying transforms PSNR
Wavelet 29.02

Contourlet 31.81
Nonlinear conjugate ℓ1 

Wavelet+Contourlet 32.56
Wavelet 28.16

Contourlet 32.36
Smoothed ℓ0 

Wavelet+Contourlet 34.23

 
6. CONCLUSION 

 
The combined sparsifying transforms for smooth ℓ0 norm 
minimization is proposed to reconstruct the magnetic 
resonance images from noiseless undersampled k-space data. 
Theoretical analysis and simulation results demonstrate that 
the proposed method can improve image quality than single 
sparsifying transform. However, the robust to noisy k-space 
data is the future work. 
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