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Low Rank Enhanced Matrix Recovery of Hybrid
Time and Frequency Data in Fast Magnetic

Resonance Spectroscopy
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Abstract—Goal: The two dimensional magnetic resonance
spectroscopy (MRS) possesses many important applications in
bio-engineering but suffers from long acquisition duration. Non-
uniform sampling has been applied to the spatiotemporally
encoded ultrafast MRS, but results in missing data in the hybrid
time and frequency plane. An approach is proposed to recover
this missing signal, of which enables high quality spectrum
reconstruction. Methods: The natural exponential characteristic
of MRS is exploited to recover the hybrid time and frequency
signal. The reconstruction issue is formulated as a low rank
enhanced Hankel matrix completion problem and is solved by a
fast numerical algorithm. Results: Experiments on synthetic and
real MRS data show that the proposed method provides faithful
spectrum reconstruction, and outperforms the state-of-the-art
compressed sensing approach on recovering low-intensity spectral
peaks and robustness to different sampling patterns. Conclusion:
The exponential signal property serves as an useful tool to model
the time domain MRS signals and even allows missing data
recovery. The proposed method has been shown to reconstruct
high quality MRS spectra from non-uniformly sampled data in
the hybrid time and frequency plane. Significance: Low-intensity
signal reconstruction is generally challenging in biological MRS
and we provide a solution to this problem. The proposed method
may be extended to recover signals that generally can be modeled
as a sum of exponential functions in biomedical engineering
applications, e.g. signal enhancement, feature extraction and fast
sampling.

Index Terms—Fast sampling, magnetic resonance spectroscopy,
exponential signal, reconstruction, low rank.

I. INTRODUCTION

MAGNETIC resonance spectroscopy (MRS) embraces a
wide range of applications in biomedical engineering,

such as structural biology [1]–[3], metabolic studies [4], [5]
and clinical diagnosis [6]. The one dimensional (1D) MRS,
obtained by performing the 1D Fourier transform on the
acquired time domain data (called free induction decay, FID),
provides protein structural and dynamical information with
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chemical shifts, coupling constant and signal strength [7]. The
two dimensional (2D) MRS is obtained by repeating a series
of 1D MRS with certain delays. The dimension where the 1D
experiments lies in is called direct dimension while the other
dimension is named indirect dimension, as shown in Fig. 1(a).
When high resolution spectrum is expected, the acquisition
of 2D MRS will last in the order of minutes [8], much
longer than that of 1D MRS that requires only seconds. For
higher dimensional spectrum, their acquisition time may rise
to hours or weeks [8]. Therefore, accelerating data acquisition
constitutes an important step in MRS applications.

There are numerous approaches to reduce data acquisition
time in MRS, such as new hardware designs [9], pulse se-
quence optimization [10]–[13] and sparse sampling [14]–[20].
Particularly, the spatiotemporally encoded ultrafast (STEU)
MRS saves significant time of successive 1D experiments
in the conventional 2D MRS [12], and even can be capable
of real-time studies [21], [22]. This technology concurrently
encodes the spectral information in the indirect dimension
along spatial layers of substances in test tubes, and a 2D
spectrum will be obtained in a single scan. In the direct
dimension, the STEU temporally encodes time information as
the conventional MRS does. This specific encoding scheme
in STEU MRS results in its indirect dimension lying in the
frequency domain, but not in the time domain as conventional
MRS does. Then, only 1D Fourier transform is performed on
the direct dimension to obtain a complete 2D spectrum [12].
The 2D STEU MRS data are acquired in a hybrid time and
frequency (HTF) plane (Fig. 1(b)). The STEU MRS, however,
has a demand of strong acquisition gradients, which inflicts
harms to magnetic resonance instrument [23]. Recently, for the
purpose of circumventing this shortcoming, the non-uniform
sampling has been introduced and the acquired acquisition
gradient strength can maximally decrease to 20%. However,
it leads to the missing of data points on the HTF plane [23].
Then, we have to reconstruct these missing points with proper
spectrum properties [14]–[18], [24]–[26] to obtain a high-
resolution MRS.

Recovering missing data in the HTF plane where each data
point simultaneously carries time and frequency information
(Fig. 2) poses as a challenging task. Recently, compressed
sensing (CS) has been applied to recover HTF signals [23].
This approach exploits the spectral sparsity of each 1D time
domain signals along the direct dimension and provides nice
reconstruction. However, CS provides unsatisfactory recon-
struction of broad and low-intensity peaks due to the loss of
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sparsity. In practice, the loss of weak peaks and shrinkage of
broad peaks are observed in CS reconstruction [19]. These
peaks, however, play indispensable role in some MRS appli-
cations, e.g. carboxylic acids [27].
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Fig. 1. An illustration of acquired 2D MRS signals using traditional and STEU
methods. (a) The traditionally acquired signal in the time-time plane; (b) The
STEU acquired signal in the time-frequency plane; (c) The 2D spectrum in
the frequency-frequency plane.

Instead of penalizing peak intensities, the state-of-the-art
low rank Hankel-matrix (LRHM) method aims to minimize the
number of spectral peaks [19], and thus averts the impact of
sparsity of each peak. It has been shown that LRHM is capable
of reconstructing both broad and narrow peaks faithfully. The
LRHM serves as a time domain reconstruction method because
it explores the equivalence of (a) the rank of a Hankel matrix,
constructed by a time domain MRS signal, and (b) the number
of component exponentials. This property, originates from the
physical modeling of MRS signals, has been applied to MRS
signal processing for decades [20], [28]–[31]. However, the
LRHM was originally designed for missing data recovery in
the time domain, but not in the HTF planes as discussed in
this article. Thus, how to explore the low rank or sparsity for
HTF signals raises a challenging problem.

In this work, a new approach, simultaneously exploring the
exponential structures in time and frequency dimensions, is
proposed for recovering 2D HFT signals. We first convert
the 2D HTF signal into a 2D time-time domain signal, and
then construct an enhanced Hankel matrix. We enforce the
enhanced Hankel matrix to be low-rank and design a fast
algorithm without singular value decomposition (SVD). Re-
sults on synthetic and real STEU COSY spectra demonstrate
that the proposed approach achieves faithful reconstruction
of line shapes for spectral peaks and quantitative criteria. A
preliminary account of this study was presented in a recent
conference paper [32].

The remainder of this article is organized bellow. Section II
describes the proposed model and the numerical algorithm.
Section III first evaluates the typical reconstruction perfor-
mance on synthetic and real MRS signals, and then discuss
reconstructions with different sampling patterns, noise levels
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Fig. 2. Principle illustration of hybrid time-frequency plane.

and sampling rates, as well as the selection of regularization
parameter λ. Section IV draws the conclusion.

II. PROPOSED METHOD

A. Challenge of spectrum recovery

The signals reconstruction along the direct dimension of
STEU MRS serves as a time domain signal recovery problem.
As discussed above, LRHM outperforms CS in terms of broad
and low-intensity peak reconstruction [19]. In principle, the
time domain exponential signal recovery by LRHM model
possesses reasonability [20], [28], [31]. The LRHM allows
exact recovery of 1D or 2D exponentials from noiseless time
domain measurements [33] as long as the number of time
domain measurements exceeds the order of rlog4n, where r
and n denote the number of peaks and the ambient dimension
of the signal, respectively.

In practice, both this work and our previous work in real
MRS application [19] verify that the LRHM enjoys advantage
over recovering the broad and low-intensity peaks compared
with CS.

As a frequency domain signal recovery problem, the re-
construction of signals along the indirect dimension of STEU
MRS faces challenge. To restore the frequency domain signal,
we consider using CS or LRHM to reconstruct these frequency
domain signals. For instance, the 1D frequency domain signal
may be reconstructed by extending the `1 norm minimization
[15], [16] as

min
s
‖s‖1 +

λ

2
‖y −Ps‖22 , (1)

where s denotes 1D frequency domain signal, y acquired
frequency domain data and P the undersampling operator in
frequency domain. The parameter λ balances the sparsity with
the data consistency and ‖.‖1 and ‖.‖2 denote `1 (sum of
absolute values) and `2 norm (the square root of the sum of
the squares) of a vector, respectively. We can extend LRHM
[19] to reconstruct frequency domain signals as

min
s

∥∥QF−1s
∥∥
∗ +

λ

2
‖y −Ps‖22 , (2)

where Q denotes constructing a Hankel matrix from a vector,
‖.‖∗ the nuclear norm (sum of singular values) and F−1

inverse Fourier transform.
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We have conducted a numerical experiment in Fig. 3 to
validate the possibility of two approaches on frequency domain
signal recovery. Figure 3 implies that LRHM provides faithful
reconstruction of frequency domain signal but CS cannot.
According to the CS theory, for the sake of obtaining a faithful
reconstruction, the space, in which the signal is acquired,
should not be the same with the space where the sparsity
is enforced [34], [35]. If we perform sampling and enforce
spectrum sparsity on the same signal space, the frequency
information will be lost in CS reconstruction due to direct data
loss in the spectrum. The LRHM takes another direction, along
which the rank of the time domain signals of the spectrum
is enforced. These comparisons lead us to choose LRHM to
restore frequency domain signals in STEU MRS. Regarding
the 2D STEU signal discussed here, it simultaneously carries
time and frequency information. Therefore, a new low rank
reconstruction model need to be designed.

Fig. 3. Missing data recovery of spectrum. (a) The ground truth spectrum
(green solid line) and acquired frequency data points (yellow dots), (b) and
(c) are recovered spectrum by imposing the spectrum sparsity in CS and the
low rank of time signal in LRHM, respectively. Note: The 8% spectral points
are acquired from the total 512 spectral points.

In summary, the low rankness of signals along both direct
and indirect dimensions should be explored to restore the
hybrid time and frequency signals in STEU MRS.

B. Low Rank Enhanced Hankel Matrix of MRS Signal

The 2D MRS signal can be modeled as a sum of damped
exponentials X ∈ CM×N [28],

Xm,n=

R∑
r=1

are

(
i2πm∆t1f1,r−

m∆t1
τ1,r

)
e

(
i2πn∆t2f2,r−

n∆t2
τ2,r

)
, (3)

where 0 ≤ m < M − 1, 0 ≤ n < N − 1. ar =
drexp (iφ1,r + iφ2,r) denotes the complex amplitude, τ1,r
and τ2,r decay constants of the magnetization, f1,r and f2,r

frequencies.
For simplicity, Eq. (3) is rewritten as

Xm,n =

R∑
r=1

arc
m
r w

n
r , (4)

where cr = exp (i2π∆t1f1,r −∆t1/τ1,r) and wr =
exp (i2π∆t2f2,r −∆t2/τ2,r).

The block Hankel matrix BX ∈ k1k2×(N−k2+1)(M−k1+1)

is defined as [33], [36], [37]

BX =


X0 X1 · · · XM−k1

X1 X2 · · · XM−k1+1

...
...

...
...

Xk1−1 Xk1
· · · XM−1

 , (5)

where B denotes an operator that transforms a matrix to a
block Hankel matrix and k1 is called a pencil parameter [33],
[36], [37]. Each submatrix Xm in BX is a Hankel matrix,
satisfying

Xm =


Xm,0 Xm,1 · · · Xm,N−k2

Xm,1 Xm,2 · · · Xm,N−k2+1

...
...

...
...

Xm,k2−1 Xm,k2
· · · Xm,N−1

 , (6)

where k2 denotes another pencil parameter [33], [36], [37].
The Hankel matrix Xm can be expressed as

Xm = WLC
m
d AWO, (7)

where

WL =


1 1 · · · 1
w1 w2 · · · wR

...
...

...
...

wk2−1
1 wk2−1

2 · · · wk2−1
R

 , (8)

WO =


1 w1 · · · wN−k2

1

1 w2 · · · wN−k2
2

...
...

...
...

1 wR · · · wN−k2

R

 , (9)

Cd = diag [c1, c2, · · · , cR] , (10)

A = diag [a1, a2, · · · , aR] . (11)

Thus, combing Eq. (7) with Eq. (5), BX becomes

BX =


WL

WLCd

...
WLC

k1−1
d

A
[
WO,CdWO, · · · ,CM−k1

d WO

]
,

(12)
where the column and row space of BX are spanned. From
Eq. (7) to Eq. (12), it has been found that [33], [36]

rank (BX) ≤ R, (13)

where rank (BX) = R if and only if each pair (cr, wr) is
distinct.

Thus, BX meets low rank based on the assumption that
the number of the spectral peaks satisfies the condition R �
min {k1k2, (N − k2 + 1) (M − k1 + 1)}. Fortunately, in the
field of MRS, the assumption above is generally satisfied [19],
implying that the low rank property can be applied in MRS
reconstruction.

C. Signal Reconstruction Model

The fully sampled 2D signal from the spectrometer in STEU
is denoted as a matrix G (Fig. 2(a)), where each row of G
serves as a frequency domain signal (in the indirect dimension)
while each column of G denotes a time domain signal (in
the direct dimension), respectively. The operator F−1

freq denotes
converting each row of a HTF signal into a time domain signal
by performing inverse 1D discrete Fourier transform, and thus
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F−1
freqG poses as a 2D time domain signal. Then this 2D signal

is transformed into an enhanced matrix that is low rank.
In this work, we propose the following low rank reconstruc-

tion model to restore HTF signals:

min
G

∥∥∥BF−1
freqG

∥∥∥
∗

+
λ

2
‖Y −PΩG‖2F , (14)

where Y denotes acquired HTF data with zeros filling on
non-acquired data points, PΩ the operator that performs
undersampling on 2D signal with zeros filling on non-acquired
data points and ‖.‖F the Frobenius norm (the square root
of the sum of the squares) of a matrix. The parameter λ
tradeoffs between the nuclear norm term

∥∥∥BF−1
freqG

∥∥∥
∗

and

data consistency term ‖Y −PΩG‖2F . Fundamentally, we are
looking for a 2D spectrum with minimal number of peaks
subject to the acquired data. The proposed model is also an
extension of CS because the nuclear norm can be considered
a special case of `1 norm in the sense of the sum of the
absolute of singular values. However, in order to distinguish
the proposed method from previous CS method that minimizes
the `1 norm of spectrum [23], we consistently use low rank
in the rest of this paper to interpret our work.

Matrix completion can be obtained by nuclear norm mini-
mization, and SVD is typically required for the singular value
thresholding operator [38]. However, it is time and memory
consuming to perform SVD on a large scale matrix. For
example, given a 256 × 256 matrix X, the size of its block
Hankel matrix BX will reach 16384 × 16641 with pencil
parameters k1 = 128, k2 = 128. Performing one-time SVD
on this matrix will take nearly half an hour on our computing
server equipped with 112 GB memory and two physical CPUs
at 3.5 GHz. It will spend hours on performing SVD in iterative
algorithm [19], preventing its application in practical MRS
reconstruction. A number of strategies have been proposed
to reduce the cost of performing SVD on a large scale matrix
[39]–[41]. But, in this paper, a SVD-free algorithm is expected
to save the computation for the low rank reconstruction. It has
been shown that the following relationship holds true [42]

‖X‖∗ = min
U,V

1

2

(
‖U‖2F + ‖V‖2F

)
s.t. UVH = X,

(15)
where U and V denotes two matrices and the upper subscript
H denotes Hermitian transpose of a matrix. With this proxy,
SVD computation is no longer required since only Frobenius
norm and matrix factorizations are involved.

Therefore, we further propose the equivalent SVD-free
reconstruction model

min
G,U,V

1

2

(
‖U‖2F + ‖V‖2F

)
+
λ

2
‖Y −PΩG‖2F

s.t. UVH = BF−1
freqG

(16)

to restore HTF signals. This model avoids SVD computation,
thus the computational complexity reduces significantly. We
call the proposed model as low rank block Hankel matrix of
hybrid time and frequency signals (LRBHM-HTF).

D. Numerical Algorithm

In this subsection, we design an efficient numerical al-
gorithm to solve the proposed model in Eq. (16). For the
sake of obtaining fast computation in low rank reconstruction,
the alternating direction method of multipliers algorithm [19],
[20], [43], [44] is modified to fit the reconstruction problem
here. The main steps are derived below.

The augmented Lagrangian form of Eq. (16) is

max
D

min
G,U,V

1

2
‖U‖2F +

1

2
‖V‖2F +

〈
D,BF−1

freqG−UVH
〉

+
β

2

∥∥∥BF−1
freqG−UVH

∥∥∥2

F
+
λ

2
‖Y −PΩG‖2F ,

(17)

where D denotes Lagrange multiplier, 〈·, ·〉 represents an inner
product in the Hilbert space of complex matrices, defined by
〈A,B〉 = < 〈A (:) ,B (:)〉 = < (trac (A∗B)), < denotes the
real part and the parameter β > 0.

To solve Eq. (17), we alternately solve the following sub-
problems:

min
G

λ

2
‖Y −PΩG‖2F +

〈
D,BF−1

freqG−UVH
〉

+
β

2

∥∥∥BF−1
freqG−UVH

∥∥∥2

F
, (18)

min
U

1

2
‖U‖2F +

〈
D,BF−1

freqG−UVH
〉

+
β

2

∥∥∥BF−1
freqG−UVH

∥∥∥2

F
, (19)

min
V

1

2
‖V‖2F +

〈
D,BF−1

freqG−UVH
〉

+
β

2

∥∥∥BF−1
freqG−UVH

∥∥∥2

F
, (20)

D←D + τ
(
BF−1

freqG−UVH
)
, (21)

where τ denotes the step size.
The problem (18) is equivalent to

min
G

β

2

∥∥∥∥BF−1
freqG−UVH +

D

β

∥∥∥∥2

F

+
λ

2
‖Y −PΩG‖2F ,

(22)
whose solution is

G =
(
λPH

Ω PΩ + βFfreqB
HBF−1

freq

)−1

[
λPH

Ω Y + βFfreqB
H

(
UVH − D

β

)]
.

(23)

For problem (19), we have

min
U

1

2
‖U‖2F +

β

2

∥∥∥∥BF−1
freqG−UVH +

D

β

∥∥∥∥2

F

, (24)

and its solution is

U =
(
βBF−1

freqG + D
)
V
(
βVHV + I

)−1
. (25)

The problem (20) can be expressed as

min
V

1

2
‖V‖2F +

β

2

∥∥∥∥BF−1
freqG−UVH +

D

β

∥∥∥∥2

F

, (26)
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and its solution is

V =
(
βBF−1

freqG + D
)H

U
(
βUHU + I

)−1
. (27)

The problem (21) can be solved with a simple update on
the dual variable D.

The whole algorithm is summarized in Algorithm 1. In
our implementation, we initialize G0 by the acquired hybrid
time and frequency signal with zero-filling on non-acquired
data points. What is more, U0 and V0 are empirically set
as the matrices with random numbers that are drawn from the
normal distribution with the mean 0 and the variance 1. The in-
house program runs on a computer server equipped with two
physical Intel Xeon CPUs (3.5 GHz) and 112 GB memory.
Approximately 1 minute is required by the proposed method
for the reconstruction of a typical hybrid time and frequency
MRS signal in the size of 64× 64.

Algorithm 1 Hybrid time and frequency signal recovery with
LRBHM-HTF
Input: Y, λ and sampling pattern.
Initialization: k = 0.
Output: G.

1: while k < 100 and ‖Gk+1 −Gk‖F /‖Gk‖F ≤ 5× 10−3

do

2:

Gk+1 =
(
λPH

Ω PΩ + βFfreqB
HBF−1

freq

)−1

[
λPH

Ω Y + βFfreqB
H

(
Uk(Vk)

H − Dk

β

)]
;

3:
Uk+1 =

(
βBF−1

freqGk+1 + Dk

)
Vk(

β(Vk)
H
Vk + I

)−1

;

4:
Vk+1 =

(
βBF−1

freqGk+1 + Dk

)H
Uk+1(

β(Uk+1)
H
Uk+1 + I

)−1

;

5: Dk+1 ← Dk + τ
(
BF−1

freqGk+1 −Uk+1(Vk+1)
H
)

;
6: k = k + 1;
7: end while

III. EXPERIMENTAL RESULTS

In this section, typical reconstructions on synthetic and real
2D STEU MRS are carried out to validate the performance of
the proposed method. Furthermore, we discuss reconstructions
with different sampling patterns, noise levels and sampling
rates, as well as the selection of regularization parameter λ.
The 1D Poisson Gap sampling [45] along frequency axis is
adopted to emulate the non-uniform sampling. In real appli-
cations, the gradient-switching based sampling pattern [23]
generated according to STEU technology is obtained, which
will be discussed below in III-C. The proposed LRBHM-HTF
method is compared with the state-of-the-art CS method [23].

A. Typical Reconstruction of Synthetic Data

We first simulate a 2D time domain signal X with size
64 × 64 according to Eq. (3). Parameters are set as R = 10
and ar = 1, φ1,r = φ2,r = 0, ∆t1 = ∆t2 = 1 for all

r = 1, · · · , R. Other parameters τ and f are listed in Table
I. A 2D spectrum with 10 peaks (Fig. 4(d)) is obtained by
performing 2D discrete Fourier transform on the synthetic
time domain signal X. The HTF signal (Fig. 4(a)) is first
obtained by performing the 1D discrete Fourier transform on
each row of X. Then, the complex Gaussian noise whose real
and imaginary part share the standard deviation σ = 0.01
are added to the HTF signal. The noisy HTF signal is then
subsampled according to a Poisson Gap mask (Fig. 4(b)). The
acquired noisy HTF signal is shown in Fig. 4(c).

TABLE I
VALUE OF PARAMETERS τ AND ω OF THE SPECTRUM IN Fig. (4)(d)

R 1 2 3 4 5
f1,r, f2,r 0.8,0.3 0.2,0.2 0.4,0.4 0.2,0.4 0.4,0.2
τ1,r, τ2,r 30,30 40,40 40,40 40,40 40,40

R 6 7 8 9 10
f1,r, f2,r 0.1,0.7 0.8,0.8 0.6,0.8 0.8,0.6 0.6,0.6
τ1,r, τ2,r 60,60 100,100 100,100 100,100 100,100

Note: Values of f have been normalized to a range of [0,1].

Fig. 4. Reconstruction of the synthetic spectrum. (a) denotes the full synthetic
HTF signal, (b) Poisson Gap sampling mask with 20% acquired data, in which
white (black) points denote sampled (non-sampled) points, (c) the acquired
HTF signal according to mask in (b), (d) the synthetic spectrum, (e) and
(f) are restored spectrum using CS and the proposed method. Note: The
intensities of all spectra are normalized to a range from zero to one through
diving intensities by the maximum amplitude. Ten contour levels with linear
values are set for all spectra. The regularization parameter λ = 105, pencil
parameters k1 = k2 = 32 and the matrices U and V are initialized as
random matrix with the size of 1024 × 409 and 1089 × 409, respectively,
for the proposed method.

Figure 4 shows the reconstructed spectra of synthetic data.
The CS introduces some artifacts (the yellow arrows in Fig.
4(e)) and shrinkage of peaks (the green arrows in Fig. 4(e))
while the proposed method faithfully reconstructs all peaks
(Fig. 4(f)). The new method has also increased the peak
intensities correlation coefficient from 0.91 to 0.99 (Fig. 6
), implying that the LRBHM-HTF provides more accurate
spectrum reconstruction than CS.

B. Typical Reconstruction of Real NMR Data

A 2D STEU correlation spectroscopy (COSY) of a special
oil is used to validate the proposed method. This kind of oil ex-
ists in intrahepatic fat of liver, and measuring it through MRS
serves as an important tool for clinical trials and observational
studies [4]. The STEU experiments are carried out on a Varian
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Fig. 6. Peak intensities correlation between the ground-truth spectrum and the
reconstructed spectrum on synthetic data. (a) and (b) are correlation evaluation
for CS and the proposed method, respectively. The formula g = az + b
denotes the fitted curve (see blue line) according to peak intensities between
ground-truth and reconstructed spectra with a polynomial. The notation R2

denotes Pearsons linear correlation coefficient of fitted curve. The closer that
the value of R2 gets to 1, the stronger the correlation between ground-truth
and reconstructed spectra is. Note: The intensities of all spectra are normalized
to a range of zero to one through diving intensities by the maximum absolute
amplitude. Only the maximum intensity of each peak is included in the
analysis of correlation evaluation.

500 MHz NMR System (Agilent Technologies, Santa Clara,
CA, USA) equipped with a 5-mm indirect detection probe.
Acquisition parameters include: encoding gradients = 3.91
G/cm, decoding gradients = 48.8 G/m, compensative gradient
= −7.81 G/cm, duration of each decoding gradient lobe
= 220 us, duration of the chirp pulse = 12 ms, duration of
compensative gradient = 0.5 ms, and number of alternating
gradient pairs = 150. The WURST profile with the sweep
frequency range of 30 KHz in 6 ms. In real MRS applications,
the unit of chemical shift is usually expressed in part per
million (ppm) instead of the common Hz, to avoid ambiguity
when spectrometers are at different magnet strengths. The
chemical shift is defined as

chemical shift(ppm) =
ftest − fref

fspec
× 106, (28)

where ftest denotes resonance frequency of the sample, fref

the absolute resonance frequency of a standard compound
measured in the same magnetic filed and fspec the frequency
of magnetic field strength of spectrometer.

The acquired fully sampled 2D STEU COSY signal reaches
the size of 800 × 100, along which the first dimension (800
data points) lies in frequency domain while the other in time
domain. The fully sampled 2D spectrum is shown in Fig. 5(a).
Its hybrid time and frequency signal is subsampled with a

Poisson Gap sampling pattern and only 20% data points are
used in reconstruction.
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Fig. 7. Peak intensities correlation between ground-truth spectrum and
reconstructed spectrum on STEU COSY. (a) and (b) are peak intensities
correlations with all peaks included for CS and the proposed methods,
respectively; (c) and (d) are peak intensities correlations, of which only those
peaks whose amplitudes at a range of [0,0.25] are included, for CS and the
proposed method, respectively. Note: The fitted curve and linear correlation
coefficient are evaluated following the same way used in Fig. 6.

Figure 5 shows the reconstructed STEU spectrum. Eight
low-intensity peaks are weaken or missed in CS reconstruction
(see arrows in Fig. 5(b)). In contrast, these low-intensity peaks
are reconstructed much better using the proposed method
meanwhile other peaks are still reconstructed very well. The
values of Pearsons linear correlation coefficient R2 of CS and
the proposed method are close to 1 when all peak intensities
are included in regression statistics (Fig. 7(a) and (b)), which
implies that both CS and the proposed method provide nice
reconstructions. However, when focusing on low-intensity
peaks (at a range of 0 to 0.25), we observe that the values
of R2 of CS method drops to 0.9966, but the value of R2

of proposed method remains 0.9998 (Fig. 7(c) and (d)). The
R2 value implies that the proposed method produces more
consistent reconstruction for low-intensity peaks (Fig. 5(c))
than CS (Fig. 5(b)).
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Quantification of the liver fat spectrum is marked as an
important tool in bio-engineering applications [4], [46]. The
resonance volume is adopted as the criteria because resonance
volumes of protons reflect the ratio of different components
in the intrahepatic fat, which earns importance in diagnosis
of liver disease [4]. The resonance volumes of the STEU
COSY, discussed above, are sorted in descending order and
the quantitative results are listed in Table II. Quantitative
results show that proton resonance volumes in reconstructed
spectrum by the proposed method are more closer to the
resonance volumes in reference spectrum than CS. For better
visualization of quantitative analysis in Table II, we define
quantitative error factor (QEF) by

QEF =
|s− ŝ|

s
, (29)

where s denotes resonance volume of proton in reference
spectrum, ŝ the resonance volume of proton in reconstructed
spectra. The smaller the value of QEF is, the higher the
quantification accuracy of reconstructed spectrum is. Figure
8 depicts the values of QEF according to Table II. For most
high-intensity peaks (protons 2,3,4), both CS and the proposed
method produce nice reconstruction, in which the QEF is lower
than 0.05. However, for low-intensity peaks (protons 5 to 9),
CS provides inferior result (QEF > 0.1) than the proposed
method (QEF < 0.05), where the latter implies the faithful
reconstruction for low-intensity peaks. Although the proton 1
is in large intensity, the CS reconstruction abnormally leads to
relatively high quantitative error (QEF ≈ 0.07). Furthermore,
the error bars in Fig. 8 imply that the LRBHM-HTF method
is more robust to the Poisson Gap sampling pattern since the
QEF values do not differ greatly under different Poisson Gap
sampling patterns.

TABLE II
QUANTITATIVE ANALYSIS OF STEU COSY

Protons Resonance volume
ID Type ppm Reference CS Proposed
1 methylene 1.30 37.69 40.30±0.13 38.01±0.03
2 methyl 0.90 16.79 16.73±0.15 16.80±0.02
3 olefinic 5.29 12.98 12.92±0.20 13.00±0.01
4 α-olefinic 2.02 12.08 11.79±0.16 12.06±0.03
5 α-carboxyl 2.24 8.16 7.69±0.18 8.12±0.04
6 diacyl methylene 2.75 5.23 4.64±0.11 5.17±0.03
7 β-carboxyl 1.60 4.78 4.28±0.18 4.63±0.02
8 glycerol backbone CH 4.30 1.19 0.86±0.04 1.16±0.01
9 CH2 4.05 1.10 0.79±0.02 1.05±0.01

Note: Spectral peaks in STEU COSY are assigned to protons according
to previous work [4]. Resonance volume was obtained by peak intensities
of a proton dividing by the summation of peak intensities of all protons.
Average resonance volumes and its corresponding standard deviation are
obtained over 10 Monte Carlo trials with different sampling patterns in
CS and the proposed method. The resonance volumes are normalized by
the total resonance volumes.

C. Reconstructions with Different Sampling Patterns

In order to evaluate the robustness of proposed method
to different sampling patterns, we adopt gradient switching-
based, Poisson Gap and fully random sampling patterns. In real
applications, the gradient switching-based sampling pattern is

Q
E

F

Proton ID

Fig. 8. QEF according to Table II. The error bars represent the deviation of
the QEF under different sampling patterns.

achievable and generated according to STEU technology [23]
with a pseudo random oscillating gradient whose wavenumber
k is obtained according to

k =

∫ t

0

γaGa

(
t
′
)
dt

′
, (30)

where t denotes the pulse duration, γa the gyromagnetic ratio
and Ga the acquisition gradient. The gradient switching-based
sampling pattern is obtained by rearranging data points of the
acquisition trajectories (in k− t plane, i.e., HTF plane) into a
data matrix (800 × 100), in which positions of sampled data
points set as 1 while positions of non-sampled data points set
as 0.

Under three different types of sampling pattern with a
fixed sampling rate of 0.5, Fig. 9 indicates that the proposed
method is robust to the sampling pattern while CS is not.
Given a Poisson Gap sampling pattern, CS provides as good
reconstruction as the proposed approach on most peaks (see
Fig. 9 (c) and (f)), but CS produces line shape shrinkage
of low-intensity peaks while proposed method allows faithful
reconstruction (see Fig. 9 (k)). Under both gradient switching-
based and fully random sampling patterns, some low-intensity
peaks are weaken or even missing in CS reconstructions (see
black arrows in Fig. 9 (d) and (e)), while those peaks are
reconstructed much better by the proposed method (see black
arrows in Fig. 9 (g) and (h)).

D. Reconstructions under Different Noise Levels

We adopt the synthetic data with different noise levels to
analyze the impact of noise level on reconstructions. Three
different noise levels with σ = 0.005, 0.05 and 0.1 are used
to evaluate reconstructions by CS and the proposed method.

Figure 10 indicates that under low (σ = 0.005) and moder-
ate (σ = 0.05) noise levels, the proposed method outperforms
CS in terms of spectrum reconstructions but under a high noise
level (σ = 0.1), both CS and proposed method are unable
to provide promising reconstructions. For example, under a
low noise level (σ = 0.005), the proposed method provides
faithful reconstruction while CS imposes shrinkage of peaks
and introduces artifacts in reconstructions (see Fig. 10 (g) and
(j)). We measure the noise of the real STEU MRS used in this
work and found its noise level is 0.005. Thus, the proposed
method works well for the real MRS data.
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Fig. 9. Reconstructions of STEU COSY spectrum using different sampling patterns. (a) The fully sampled spectrum; (b) shows three sampling patterns with
sampling rate 0.5; (c), (d) and (e) are the reconstructions by CS with Poisson Gap, random and gradient switching-based sampling patterns, respectively;
(f), (g) and (h) are the reconstructions by the proposed method with Poisson Gap, random and gradient switching-based sampling patterns, respectively; (i),
(j) and (k) are spectral line shapes of representative peaks #3, #2 and #1 (see (a) for peak positions) in (c) and (f). Note: The three peaks are with high,
moderate and low intensities, respectively. The white points in sampling patterns denote the sampled data points while the black points denote the unsampled
data points. The regularization parameter λ for the proposed method is λ = 107.

However, if one encounters much higher noise level σ = 0.1
in some applications, peaks may be weakened seriously in
CS reconstruction and some artifacts are introduced by the
proposed method (see Fig. 10 (i) and (l)). Thus, recovering
the hybrid time and frequency signal under a high noise level
poses as a challenging task.

E. Reconstructions with Different Sampling Rates

Under different sampling rates of gradient switching-based
sampling patterns, Fig. 11 shows that the proposed method
provides better reconstructions for real STEU COSY spectrum
than CS. Specifically, under a sampling rate of 0.5, the
proposed method allows reliable reconstruction of spectral
peaks (see Fig. 11 (h) and (k)), while the CS method shows
obvious line shape shrinkage of moderate and low-intensity
peaks (see Fig. 11 (e) and (k)). Furthermore, under lower
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Fig. 10. Reconstructions of synthetic spectra under different noise levels. (a)
denotes the noiseless fully sampled synthetic spectrum, (b) the hybrid time and
frequency plane signal, (c) the corresponding sampling pattern, (d), (e) and
(f) are noisy fully sampled spectra under noise levels σ = 0.005, 0.05 and
0.1, (g), (h) and (i) are reconstructions by CS under noise level σ = 0.005,
0.05 and 0.1, respectively. (j), (k) and (l) are reconstructions by proposed
method under noise level σ = 0.005, 0.05 and 0.1, respectively. Note: The
synthetic data in Fig. 4 (d) is used. The Poisson Gap sampling is adopted
with sampling rate of 0.2.

sampling rate (sampling rate = 0.4), the proposed method is
still able to keep these peaks robust (see Fig. 11 (g)) while
some low-intensity peaks are weakened or even missing in CS
reconstruction (see Fig. 11 (d)).

F. Selection of Regularization Parameter λ

The synthetic data (see Fig. 12(b)) with five peaks is
generated according to Eq. (3) for discussing the selection of
regularization parameter λ. Parameters of the synthetic data are
set as R = 5, ar = 1, φ1,r = φ2,r = 0 and ∆t1 = ∆t2 = 1
us for all r = 1, · · · , R. Other parameters τ and f are listed
in Table III.

To evaluate the reconstruction error, we adopt the Relative
Least Normalized Error (RLNE) defined as

RLNE =
‖Gref −Grec‖F
‖Gref‖F

(31)

where Gref and Grec denote the fully sampled signal and the
reconstructed signal, respectively.

The optimal λ, producing the lowest RLNE, generally
decreases as the noise level increases. For instance, as shown
in Fig. 12 (a) the optimal range is λ ∈

[
5× 102, 107

]
for

low noise level (σ = 0.005) while this range reduces to
λ ∈

[
5× 102, 103

]
as noise level rises (σ = 0.05). Thus,

a smaller λ is suitable for higher noise level.
Figure 12 (a) indicates that there exists an available range

of λ (5 × 102 ≤ λ ≤ 5 × 103) that leads to a relatively low
reconstruction errors. In addition, the small or large value of λ
( λ < 5×102 or λ > 5×103) introduces higher reconstruction
errors, because that a small λ results in baseline distortion (see
Fig. 12 (c)) while a too large λ introduces noise into spectrum
(see Fig. 12 (e)).

TABLE III
VALUE OF PARAMETERS τ AND f OF THE SPECTRUM IN Fig (12)(b)

R 1 2 3 4 5
f1,r, f2,r 0.1,0.6 0.44,0.55 0.55,0.24 0.72,0.83 0.85,0.85
τ1,r, τ2,r 180,200 150,150 250,250 230,230 300,300

Note: Values of f have been normalized to a range of [0,1].

IV. CONCLUSION

A low rank enhanced Hankel matrix method is proposed
to reconstruct missing data in the hybrid time and frequency
plane. This method is verified by the non-uniformly sampled
data recovery in the spatiotemporally encoded ultrafast mag-
netic resonance spectroscopy. Experiments on synthetic and
real magnetic resonance spectroscopy data demonstrate that
the proposed approach provides faithful spectrum reconstruc-
tion and outperforms the state-of-the-art compressed sensing
method in terms of reconstructing low-intensity spectral peaks
and robustness to different non-uniformly sampling patterns.

We have observed that the low rank Hankel matrix ap-
proach is capable of recovering the lost spectrum data but the
compared CS method is not. The proposed method primarily
relies on two signal properties: 1) A limited number of
peaks exists in spectrum, i.e. the spectrum is sparse; 2) The
signal can be modeled or approximated by a superposition
of exponential signals. Thus, the proposed method is not
limited to reconstruct magnetic resonance spectroscopy but
holds the potential to recover any signals in biomedical
engineering applications, along which the signal is modeled
by a sum of exponential functions, for example, magnetic
resonance signal enhancement [20], [29], [31], [47], [48]
and fast imaging [44], [49]–[51]. The code and data of this
paper will be available at http://www.quxiaobo.org/project/
LowRank Hankel HTF/Toolbox HTF Hankel NMR.zip.
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