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Abstract 

Background: Low-resolution images may be acquired in magnetic resonance imaging (MRI) due to 

limited data acquisition time or other physical constraints, and their resolutions can be improved with 

super-resolution methods. Since MRI can offer images of an object with different contrasts, e.g., 

T1-weighted or T2-weighted, the shared information between inter-contrast images can be used to 

benefit super-resolution.  

Methods: In this study, an MRI image super-resolution approach to enhance in-plane resolution is 

proposed by exploring the statistical information estimated from another contrast MRI image that 

shares similar anatomical structures. We assume some edge structures are shown both in T1-weighted 

and T2-weighted MRI brain images acquired of the same subject, and the proposed approach aims to 

recover such kind of structures to generate a high-resolution image from its low-resolution counterpart.  

Results: The statistical information produces a local weight of image that are found to be nearly 

invariant to the image contrast and thus this weight can be used to transfer the shared information from 

one contrast to another. We analyze this property with comprehensive mathematics as well as numerical 

experiments.  

Conclusion: Experimental results demonstrate that the image quality of low-resolution images can be 

remarkably improved with the proposed method if this weight is borrowed from a high resolution 

image with another contrast. 

Keywords: Super-resolution, multi-contrast, statistical information, weight, non-iterative process 
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Section I. Background 

In MRI, low-resolution (LR) images may be acquired in applications, e.g., functional MRI [1, 2] and 

diffusion tensor imaging [3, 4], due to limited data acquisition time or other physical constraints. 

High-resolution (HR) images appear favorable to perform subsequent posterior image processing and 

visualization [5]. Super-resolution methods are widely utilized to improve image resolution [6-10]. 

Typical methods include sparse representations [6-8], projection onto convex sets (POCS) [9], tensor 

frames [10], etc. However, these methods need numerous iterations to accomplish super-resolution, 

thus they inevitably lead to high computational costs. For MRI, since a great number of images have to 

be processed, fast and stable methods are desired. Recently, the prior information of MRI has been 

explored in super-resolution. For example, (a) redundant information produced by sub-pixel spatial 

shifts between multiple images [3],  (b) space homogeneity constraint from orthogonal anisotropic 

acquisitions [2], and (c) the learned dictionary with a nature of the orthogonality [11] have been 

employed to refine structural details and edges. Besides, image contrast can also be utilized to produce 

sharper images [12]. However, these methods may not lead to faithful super-resolution results when 

multiple-shifted images are inapplicable or the information is very limited within a single image. Thus, 

one may expect other prior information beyond a single image. 

Multi-contrast images are frequently acquired in MRI experiments [13]. For example, plentiful edge 

structures are visible both in T1-weighted and T2-weighted brain images of the same subject. 

According to the principles of MRI [14], we pick up T1 or T2 weighted signal denoted by SI  and 

take the form 

TR/T1 TE/T2( )(1 e )(e )   SI H                            (1) 

where ( ) H  refers to the proton density, TR  is the repetition time and TE  is the echo time. There 

are different TR  value and TE  value within a section of medical tissue that would result in multiple 

contrast images. Yet, these images share the proton density of the subject so that they largely share 

similar anatomical structures but with different contrasts in regions. The shared information between 

inter-contrast images can be considered to benefit super-resolution. Therefore, it is possible to improve 

the LR image resolution by incorporating prior information from the different contrast image in HR. 

Rousseau proposed a patch-based iterative framework combining with non-local similarity to share 

information among multiple contrast images in [15], and later many more detailed analysis was studied 

in [16]. A constraint that the downsampled version of the reconstructed LR data must be equal to the 

original LR data is imposed in the iterative framework [5]. The non-local similarity is also measured 

with both voxel intensity and gradient intensity in super-resolution [17]. However, these methods 

require training sets or time-consuming iteration processing. 

New edge-directed interpolation (NEDI) [18] is a fast and statistical super-resolution method for a 

single image. It estimates local covariance coefficients from a LR image and assumes that this 

statistical information is also valid for the corresponding HR image. A pixel of the HR image is 

interpolated by performing the linear regression of neighboring pixels, which originate from the LR 

image. This regression process is based on non-iterative operations, thus the super-resolution can be 

performed fast. The NEDI provides a nice way of analyzing statistical information in the image 

super-resolution. Some recent methods [19-21] also use regressions to improve the image resolution 
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and achieve remarkable performances. However, these methods train hundreds of external images prior 

to recovering structural details, and require plenty of computations. Due to the nice statistical property 

and low computation time of NEDI, in this work, we extend it into the multi-contrast image 

super-resolution and demonstrate its superior performance on MRI images.  

We will explore how to incorporate the statistics from one image into another contrast image. 

Regression weights, estimated from a HR image in one contrast, and neighboring pixels around the 

interpolated location in the LR image of another contrast work together to generate a new pixel value. 

The fact that neighbors are provided by the LR image itself can offer a guarantee and support for the 

consistent contrast between the LR one and the interpolated result. Mathematical analysis and 

experimental evidence will be presented to address a fundamental question of why these weights 

between two contrast images constitute faithful criteria. Then, the proposed approach probes the 

information both from a LR image and its corresponding HR image in another contrast. Our method 

will be compared with the classic bicubic method, NEDI method [18], and the state-of-the-art 

contrast-guided interpolation (CGI) method [12] in terms of objective-evaluation criteria and visual 

perceptions.  

The remainder of this article is organized as follows: In section II, we briefly review basic concepts 

of NEDI. In section III, we derive conditions that must be satisfied in our method. Experimental results 

and discussions will be presented in sections IV. Finally, concluding remarks are made in section V. 

 

Section II. Method 

Brief review of NEDI 

In NEDI, regression weights are estimated in a local region then target pixels are calculated as a linear 

regression of neighbors [18]. Thus, it is crucial to determine the regression weights in the interpolation. 

Within a neighborhood, four neighbors are commonly used in NEDI, and consequently there are four 

regression weights for one pixel interpolation. 

 

 

Fig. 1. Interpolation process in NEDI. (a) Generating regression weights by 1-pixel-width overlap patches (with moving from left 

to right and from top to bottom) inside a local region; (b) Interpolating a new pixel
 


 
by multiplying neighbors and 4 

regression weights estimated from (a). 

 

The interpolation process is shown in Fig. 1. The NEDI uses patches in the local region to estimate 
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regression weights ( 1, 2, 3, 4)jb j (Fig. 1a). The variable ( 1, , )   n i n  denotes the number of 

patches and each patch is composed of one pixel 
iy  and its four neighbors 

,i jx  along diagonal 

directions. Then, the target pixel   is obtained by multiplying neighbors and their weights (Fig. 1b).  

The basic regression model (Fig. 1a) applied in our work is 

 
1 ,1 2 ,2 3 ,3 4 ,4 ,i i i i i iy b x b x b x b x                          (2) 

where  i
 is the residual error. By continually sampling in a 9 × 9 region, a vector 

  49

1 49, , 
T

y yy  is formed to represent pixels in this region and meanwhile a matrix 

49 4

1 49[ , , ]  X x x  , whose column 
ix  contains four neighbors of 

iy , is formed to represent all 

neighboring pixels around those pixels of y .    

Assuming the image pixel values in a local region satisfy a locally stationary Gaussian process [18], 

the regression weight  1 2 3 4

T
b b b bb  is estimated according to 

 
2

min 
b

y Xb ， (3) 

and its solution is 

 1( ) ( ).T Tb X X X y  (4) 

The above analysis can be also interpreted from the classical Wiener filtering theory. Let 

1 4 4( )T   R X X  represents a covariance between two arbitrary members of the four nearest 

neighbors, 4T r X y  represents a covariance between the center-pixel and the one of the four 

nearest neighbors around it, the optimal coefficients can be found by 

 
1 .b R r  (5) 

   

Multi-contrast image super-resolution 

In the proposed method, a HR image of one contrast is assumed to be available for interpolating a LR 

image of another contrast. This assumption is reasonable since multi-contrast images are always 

available in MRI experiments [5, 7, 13].  

The regression weights ib  for the 
thi  pixel, borrowed from one contrast HR image according to 

Eq. (4), is incorporated into the interpolation of the LR image in another contrast. Interpolated pixels 

iy  of an expected HR image are given by 

 T

i i iy  b s  (6) 

where the vector 
is  includes four pixels of the LR image that are the nearest neighbors along diagonal 

directions of the 
thi  pixel in the center. This means we assume that the HR image in Fig. 1a is in one 

contrast and the LR image in Fig. 1b is in another contrast. Then ib  is estimated from Fig. 1a and is  

comes from Fig. 1b. Therefore, this new approach absorbs prior information from the HR image in one 

contrast and maintains the data consistency of LR image in another contrast.   

To facilitate following discussion, intensities of images are all normalized between 0 and 1. 

Furthermore, we assume that multi-contrast images are well registered before super-resolution. 
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1. Weights in multi-contrast images 

For example, multi-contrast images (Fig. 2) share similar anatomical structures but are with different 

intensities in sub-regions. 

 

 

Fig. 2. A toy example of multi-contrast images of size 99. (a)-(f) share the same structure but have different intensities. 

 

Table 1 Regression weights for synthetic images shown in Fig. 2 

 Fig. 2a      Fig. 2b       Fig. 2c       Fig. 2d       Fig. 2e       Fig. 2f 

( , ) p q
 (0, 0.78) (0.39, 0.78) (0.76, 0.78) (0.78, 0.76) (0.78, 0.39) (0.78, 0) 

b  [0.50;0.00; 

0.00; 0.50] 

[0.50;0.00; 

0.00; 0.50] 

[0.50;0.00; 

0.00; 0.50] 

[0.50;0.00; 

0.00; 0.50] 

[0.50;0.00; 

0.00; 0.50] 

[0.50;0.00; 

0.00; 0.50] 

4

1 jj
b

  1.00 1.00 1.00 1.00 1.00 1.00 

 

An interesting phenomenon is that, regression weights for different contrast images in Fig. 2 are 

nearly the same (Table 1). The same observation is also found (Table 2) for MRI images generated 

from the BrainWeb [22] that embody more complex structures (Figs. 3a-d). However, regression 

weights (Table 3) will be totally different if images do not share the similar anatomical structures (Figs. 

3a, e-g). These observations convey important information: The regression weights obtained using the 

least square estimation is nearly invariant to image contrasts. If this is possible, one may easily employ 

the information from another contrast image by making use of these weights.  

 

 

Fig. 3. Sub-regions with same or different anatomical structures in synthetic MRI images. 
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Table 2 Regression weights in regions of zoom for same anatomical structures shown in Fig. 3 

 Fig. 3a                Fig. 3b              Fig. 3c                Fig. 3d 

b  [-0.19;0.70;0.55;-0.07] [-0.15;0.68;0.53;-0.06] [-0.18;0.68;0.59;-0.09] [-0.05;0.56; 0.53;-0.04] 

4

1 jj
b

  0.99 1.00 1.00 1.00 

 

Table 3 Regression weights in regions of zoom for different anatomical structures shown in Fig. 3 

Images Fig. 3a                Fig. 3e              Fig. 3f                Fig. 3g 

b  [-0.19;0.70; 0.55;-0.07] [0.44;0.04; 0.03;0.49] [0.22;0.23; 0.33;0.21] [-0.95;1.45; -0.72;1.21] 

4

1 jj
b

  0.99 1.00 0.99 0.99 

 

Besides, one may find that the sum of weights in each vector is approximately 1 (Tables 1-3). We 

will analyze this property with comprehensive mathematics and empirical tests on MRI images. This 

property will be an important foundation to derive similar regression weights for multi-contrast images. 

 

2. Sum of weights is approximately equal to 1 

Suppose there are n  central pixels, by adding n  operations in a local region, Eq. (2) is written as 

       1 ,1 2 ,2 3 ,3 4 ,41 1 1 1 1 1
.

     
         

n n n n n n

i i i i i ii i i i i i
y b x b x b x b x            (7) 

Here, i  is assumed to satisfy the normal distribution, i.e., 2~ ( , )i iN   . The variable i  is the 

mean and 
2  is the variance associated with i . Then we can easily have

1 1 1
  

  
   

n n n

i ii i i
, 

where there exists 2~ (0, )i N  . Next, according to the principle of the law of large number, 

meaning that sufficient central pixels are sampled, one has 

 1 ,1 2 ,2 3 ,3 4 ,41 1 1 1 1 1
,

     
         

n n n n n n

i i i i i ii i i i i i
y b x b x b x b x  (8) 

where 
1



n

ii
 is a fairly small constant. Then, given that ,1 ,2 ,3 ,41 1 1 1

, , ,
      

n n n n

i i i ii i i i
x x x x  

and 
1

n

ii
y  are equal to one another, one can obtain that the sum of weights follows 

 
4

1
1.


 jj

b  (9) 
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Fig. 4. Sum of weights (i.e.,
4

1 jj
b

 ) on MRI data. The vertical axis represents the percentage that the estimation values of 

4

1 jj
b

  lies in the corresponding values in the horizontal axis. (a)-(b) list the frequency of 
4

1 jj
b

 for simulated images (i.e., 

Figs. 3a and 3b). (c)-(d) list the frequency of 
4

1 jj
b

 for real images (i.e., Figs. 9a and 9b). 

 

We verify this property that sum of weights is approximately equal to 1 on MRI images. Statistical 

analysis in Fig. 4 show that most of 
4

1 jj
b

  are very close to 1 for tested images. In each image, the 

range of 
4

1 jj
b

  lies between 0.95 and 1.05 can cover above 95% pixels of local regions. 

 

 

Fig. 5. An illustration of 
4

1
1jj

b


 . (a) A synthetic image of size 256×256 in which the red solid wireframe draws out a local 

region of size 9×9; (b) Repeated pixels of each 
jx

 
and y  are indicated by an arrow; Collections of all of pixels from 

jx  

and y  were displayed in (c-g) respectively. 
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An explanation on why sum of weights is nearly 1 is given. As shown in Fig. 5a, the red solid 

wireframe indicates the local region of size 9×9. Inside this region, all upper left pixels ( 1)j j x  

come from the pixels in the marked region X1 in Fig. 5c. In the same way, the upper right ( 2)j j x  ，

bottom left ( 3)j j x  and bottom right ( 4)j j x  will be from X2, X3 and X4, respectively. 

Meanwhile, the central pixels y  are extracted from the marked region in Fig. 5g. Thus, we can see 

abundantly repeated pixels (suggestion of an arrow in Fig. 5b) are in these vectors. When the repeated 

pixels account for a big proportion in the region with a sufficiently large size, the sum of pixel value in 

each vector comes near to one another, implying that ,1 ,2 ,3 ,41 1 1 1

n n n n

i i i ii i i i
x x x x

   
      . Then, 

one can infer that sum of weights can be nearly 1 in Eq. (9). 

 

3. Shared weights in multi-contrast images 

In this section, the case where the weights in one image are close to those of another contrast image 

will be analyzed.  

Regression weights within a small region are determined mostly by the main edge direction in it. 

These weights are mainly estimated from similar image patches located on edges. In the sense of least 

square, the influence of contrast on weights regression is very limited since multiplication of a linear 

system of equations by a constant factor does not change its solution. For example, in Figs. 6a and 6b, 

one can see that corresponding regions in the T1 image (Fig. 6a) and T2 images (Fig. 6b) generate 

similar weights (Table 4).  

 

 

Fig. 6. Regression weights within local regions of T1-weighted and T2-weighted MRI images. (a) is the T1-weighted image; (b) 

is the T2-weighted image. Two pairs of image region of size 9×9 (enclosed in wireframes, marked as S1 and S2) are extracted 

from (a) and (b). Note: The data are acquired on a 3T SIMENS scanner. 
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Table 4 Regression weights for T1-weighted and T2-weighted images 

Source images Regression weights b  

S1                    S2                             

T1 [-0.10; 0.56; 0.71; -0.16]  [0.76; -0.26; -0.06; 0.53] 

T2 [-0.04; 0.54; 0.60; -0.07]  [0.76; -0.26; -0.19; 0.65] 

    

The mathematical analysis on weights is simplified as listed below: 

Weights error meets the following equation (see the derivation of Eq. (A.6) in the Appendix for 

details)  

                        
2 2 2

( ) ( ) .     b b X y Xb X d Cb                      (10) 

Regression weights are estimated by continually sampling 3×3 patches in a 9×9 region, and each 

patch is composed of one pixel 
iy  and its 4 neighbors 

, ( 1,2,3,4)i jx j  along diagonal directions. 

Consequently, the vector   49

1 49, , , ,
T

iy y y y denotes pixels in this region and the matrix 

  49 4

1 49, , , ,
T

i

 X x x x stands for all neighboring pixels around those pixels of y . Here, X  

(or X ) is the column-full-rank matrix and their generalized inversions are represented by 
X and 


X , 

respectively. In addition, there are the vector 49  d y y and the matrix 49 4  C X X .  

We measure the right hand of Eq. (10) on real MRI images at different regions and observations are 

summarized in Figs. 7. First, most of 
2

( ) X y Xb  are very close to 0 (Fig. 7a). Besides, most of 

2
( )  X d C b  is close to 0 (Fig. 7b). Therefore, the left hand of Eq. (10) approaches to 0 in most 

regions, implying that b b . This conclusion is confirmed in Fig. 7c, showing that almost 84% of 

2
b b  lies in small values (in the range [0,0.25] ) for the tested multi-contrast MRI images.  

 

 

Fig. 7. Error of regression weights on real MRI images. Weights are estimated within each pair of regions at multi-contrast 

images. The vertical axis represents the percentage that estimation values lies in the range of the horizontal axis. (a)-(c) list the 

frequency that 
2

( ) X y Xb , 
2

( ) X d Cb  and 
2

b b  occurs in the range of the horizontal axis in (a-c), respectively.  
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Section Ⅲ. Results and discussions 

In experiments, we verify our approach on realistic T1-weighted and T2-weighted brain MRI images. 

256×256 T1 and T2 HR images in Fig. 9 are from Philips Company. The T1 (TR=170ms,TE=3.9ms) 

and T2 (TR=3000ms, TE=80ms) datasets are acquired with Fast Field Echo (FFE) sequence (FOV= 

230×230 mm2,  slice thickness= 5.0 mm). The FFE sequence is a steady state gradient echo sequence 

acquired from Philips Company. The name of FFE is the trade name in Philips Company, and its 

common name is SSFP-FID. Corresponding trade name of this sequence in Siemens Company is FISP 

and in GE Company is GRASS. Fig.10 and Fig. 11are acquired at a 3T Siemens Trio Tim MRI scanner 

using a turbo spin echo sequence (FOV=230×187 mm2, slice thickness=5.0mm) and the matrix size of 

T1 (TR=2000ms, TE=9.7ms) and T2 (TR=5000ms, TE=97ms) HR images is 384×324. 

Super-resolution experiments 

Before conducting the interpolation simulation, HR images are first blurred by 3×3 Gaussian smooth 

filter with standard deviation 0.5 and then down-sampled by a factor of 2 to obtain their LR versions as 

listed in Fig. 8. The LR image will be expanded as large as the HR reference by using the basic nearest 

neighbor interpolation. Then these interpolated pixels will be updated using the proposed approach. 

 

 

Fig. 8. Input images. The original HR T2-weighted vision of (a) is acquired on a 3T Philips scanner; Original HR T2-weighted 

visions of (b) and (c) are acquired on a 3T SIMENS scanner. 

 

The proposed method aims to recover edge details of LR brain image. We only borrow the weight 

from another HR contrast image if a pixel in the expanded LR image is located on an edge. In our work, 

a pixel is declared to be an edge pixel if the local variance within the nearest neighbors is above a given 

threshold (=0.0001, under the condition of intensities of images are all normalized between 0 and 1). 

We set the same value of the threshold in all experiments. Although, in some locations, it is not enough 

to satisfy the property of weights similarity, they only take a very small proportion of the total and are 

not processed specially in the proposed method. 

The proposed approach is compared with the bicubic method, NEDI [18], and CGI [12]. The CGI 

method is used to guide the interpolation process by conducting directional filtering and achieves 

superior results compared to traditional interpolation techniques and other state-of-the-art edge-guided 

image interpolation methods. Three objective criteria, Peak Signal-to-Noise Ratio (PSNR), the 

Structural Similarity (SSIM) [23] and the relative l2 norm error (RLNE), are used to quantitatively 
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measure the supper-resolution performance. The higher PSNR indicates that the reconstructed pixel 

value is more consistent to the original HR image and the higher SSIM implies better image structures 

are preserved. Also, the lower RLNE implies better consistency to the original HR image. 

For the proposed method, we set the region size as 9×9. Within each region, 3×3 size patches with 

1-pixel-width overlap between adjacent patches is set to maximally explore the statics in the local 

region. These are typical settings in the original NEDI method and works well for tested images. For 

CGI, default parameters are used in the shared source code. 

 

 

Fig. 9. One pair of T1 and T2 MRI images acquired on 3T Philips scanner. (a) HR of T2; (b) HR of T1; (c) the bicubic; (d) NEDI; 

(e) CGI; (f) the proposed method. 

 

First pair of images in Fig. 9 clearly show the advantage of employing the statistical information 

from a HR image in another contrast. Blocky artifacts in Fig. 9c are obviously generated using the 

classic bicubic method. The NEDI method outperforms the bicubic method since sharper edges are 

observed in Fig. 9d. The CGI method recovers brain boundaries in Fig. 9e much better than NEDI. 

Most promising edges (Fig. 9f) are produced by the proposed approach.  
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Fig. 10. One pair of T1 and T2 MRI images acquired on 3T Siemens scanner. (a) HR of T2 image; (b) HR of T1 image; (c)-(f) 

are super-resolved images using the bicubic, NEDI, CGI, and the proposed method, respectively. 

 

 

Fig. 11. Another pair of T1 and T2 MRI images acquired on 3T Siemens scanner. (a) HR of T2 image; (b) HR of T1 image; (c)-(f) 

are super-resolved images using the bicubic, NEDI, CGI, and the proposed method, respectively. 
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For another two pairs of images acquired on a 3T MRI scanner in Figs. 10 and 11, it can also be 

observed that there are many artifacts around some edges (seeing arrows) by the bicubic method. Such 

artifacts can be reduced by interpolation of using NEDI and CGI, and the proposed method still 

produces most faithful edges.  

 

Table 5 PSNR/SSIM/RLNE evaluation for different methods 

Images The bicubic             NEDI                  CGI              The proposed 

Fig. 9 28.55/0.8738/0.1159 31.55/0.9117/0.0820 31.79/0.9168/0.0798 31.90/0.9190/0.0788 

Fig. 10 30.67/0.9121/0.1532 33.12/0.9347/0.1155 33.73/0.9396/0.1077 33.89/0.9400/0.1057 

Fig. 11 29.39/0.8986/0.1767 32.60/0.9282/0.1221 33.09/0.9341/0.1155 33.15/0.9345/0.1146 

Fig. A1 29.38/0.9067/0.1800 31.26/0.9389/0.1451 31.81/0.9446/0.1362 32.17/0.9466/0.1306 

Fig. A2 28.50/0.8849/0.1819 30.74/0.9196/0.1405 31.21/0.9260/0.1331 31.32/0.9262/0.1314 

 

The CGI obtains higher PSNR and SSIM and lower RLNE than both NEDI and the classic bicubic. 

The best objective criteria are achieved by the proposed approach as listed in Table 5. These criteria are 

consistent to the image quality analyzed above. 

 

Sensitivity to the Misregistration 

To evaluate how the misalignment affects the accuracy of the reconstruction result, we shift reference 

images along different directions (e.g., slant, anti-slant, vertical and horizontal) by a certain amount of 

pixels [5]. First, we compute the evaluation criteria of CGI and the proposed method using the ground 

truth HR image and the interpolated HR images; Second, each number in Table 6 is obtained by 

subtracting the evaluation criteria of the CGI from of the proposed method and is referred as “the 

improvement of the PSNR or SSIM or RLNE”. The positive number means that the proposed method 

outperforms CGI method, implying better tolerance of image misregistration. From Table 6, one can 

see that, under 1 to 2-pixel-shift, the proposed method holds advantage over CGI. 

 

Table 6 Improvements of PSNR/SSIM/RLNE compared with CGI method shown in Fig. 11 

Pixels 

to 

move 

Directions of move 

Slant                Anti-slant             Vertical               Horizontal 

0 +0.06/+0.0004/+0.0009 

1 +0.10/+0.0004/+0.0014 +0.05/+0.0003/+0.0007 +0.04/+0.0002/+0.0006 +0.07/+0.0006/+0.0010 

2 +0.08/+0.0001/+0.0011 -0.05/-0.0007/-0.0006 -0.0003/-0.0001/0 +0.03/0/+0.0004 

3 +0.06/-0.0006/+0.0009 -0.39/-0.0033/-0.0053 -0.05/-0.0005/-0.0005 -0.25/-0.0022/-0.0034 

4 -1.04/-0.0081/-0.0145 -1.57/-0.0111/-0.0229 -0.51/-0.0039/-0.0069 -1.29/-0.0092/-0.0184 

Note: One slice of the brain image in Fig.11 is used in simulation. 
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Structural distinction in T1 and T2 

In MRI, T1 and T2 images have some distinct signal intensity that may cause structural distinctions 

appeared. For example, a structure can be visible clearly in the T2 image and is embodied too little in 

the T1 image (Fig. 10a and b, arrow B), or, in turn, a structure can be visible in T1 image and is 

embodied too little in the T2 image (Fig. 10a and b, arrow A). These distinct structures may be lesions 

or normal organisms but are not ghosts. This is normal phenomenon in MRI. 

 

 

Fig. 12. Super-resolution of structural distinctions. (a) The HR of T2 image (the ground-truth); (b) The HR T1 image (the 

reference); (c) The proposed. 

 

As discussed in Section 3.1, we know estimated weights are nearly invariant to image contrasts. 

Therefore, the super-resolution still can work decently. Fig. 12 demonstrates the proposed method 

produces structures consistent with the ground-truth. For example, if a structure is observed on the 

reference but not on the ground-truth HR image, the proposed approach will not introduce the structure 

into the reconstruction (Fig. 12, arrow A). Other structures, which are found on the ground-truth image 

but not on the reference, can be recovered faithfully (Fig. 12, arrow B). These recovered structures are 

not reproduced correctly as well as in the ground-truth image, and appear blurrier than its vision in the 

ground-truth image. 

Image denoising 

We agree that the noise is not obviously presented in the tested brain imaging datasets. But the 

proposed method has the ability to suppress noise since regression weights are estimated according to 

the least square rule, which intrinsically has the ability to suppress noise. 

 

 

Fig. 13. Effects of noise with various region sizes. Note: To simulate the 3% Rician noise, the zero mean Gaussian noise are 

added to real and imaginary parts of T2-weighted images, respectively. 
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  To further elaborate the noise removal, the noise at common levels (1%, 3% and 5% of the 

maximum intensity) [24, 25] is added into the ground-truth image. Results of 3% noise in Fig. 13 imply 

that reducing the region size to 5×5 or increase to be larger than 9×9 will reduce the PSNR, SSIM and 

increase the reconstruction error, RLNE. Therefore, a region size of 7×7 or 9×9 is suggested to 

optimally suppress the noise. For other noise levels, trend curves of objective criteria are similar with 

Fig. 13 and come to the same conclusion. 

We also comment that if the serious noise that may injury the interpolation result, noise removal 

before the interpolation should be accomplished. This is beyond the scope of this work and we leave 

this as the future work. 

Computation Time 

Our method is implemented with MATLAB on a personal computer with Dual-Core CPU 3.00GHz and 

2GB memory. The computation time of the proposed method is very close to NEDI, and costs around 

10 seconds. 

 

Section Ⅳ. Conclusions 

An MRI image super-resolution approach is proposed to employ the statistical information retrieved 

from another contrast MRI image that shares similar anatomical structures. It is found that local 

regression weights are very similar among multi-contrast MRI images. This property is analyzed with 

comprehensive mathematics and experimental evidence. Experiment results demonstrate that the image 

quality of the low-resolution image can be truly improved if the contrast-invariant weight is borrowed 

from the high resolution image of another contrast. In the future, we plan to further improve the 

sharpness of edges and textures by utilizing sparse representation [26-29] and local geometric 

directions [30-32]. The code of this work is available at 

http://www.quxiaobo.org/project/MultiContrastMRI/Toolbox_MultiContrastMRI_Superresolution.zip 

Abbreviations 

MRI: Magnetic resonance imaging; LR: Low-resolution; HR: High-resolution; POCS: Projection onto convex sets; 
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Appendix A (Fig. A1, Fig. A2, Fig. A3 and Fig. A4) 
Regression Weights Errors Using Multi-contrast Images 

We conduct the following mathematical derivation for shared weights in multi-contrast images. Let b  

and b  be optimal weight vectors for two contrast images in the sense of least squares. Then 

, .  b X y b X y                           (A.1) 

where y  (or y ) 49 1  is a vector which contain pixels in the local region, and X  (or X ) 

49 4  is the column-full-rank matrix, in which each row is composed of four nearest neighbors along 

the two diagonal directions around the pixel of the corresponding row of y  (or y ). Here, 
X  and 


X  represent the generalized inversion of X  and X , respectively.  

 In addition, we use h  to represent the error of regression weights according to 

                                 . h b b                                  (A.2) 

Let us suppose that 49 4  C X X  and 49 1  d y y , we get 

 , .   X X C y y d  (A.3) 

Then substituting Eq. (A.1) and Eq. (A.3) into Eq. (A.2), one obtains 

 ( ) .   h X y d X y  (A.4) 

By simple mathematical calculation on Eq. (A.4), we get 

 ( ) ( ).    h X y Xb X d Cb  (A.5) 

Therefore, the norm of regression weight errors between two contrast images is bounded by 

 
2 2 2

( ) ( ) .    h X y Xb X d Cb  (A.6) 

 

Completely Opposite Contrast Images 

Here, we will analyse a simple and excessive case. Suppose two multi-contrast images have completely 

opposite contrasts (Figs. A1a and A1b), the vector b  can be found by 

 
49 4 2

,1 1
arg min{ ( ) }

j
i i j ji jb

y x b
 

  b  (A.7) 

and the vector b  in the opposite contrast image can be found by 

 
49 4 2

,1 1
arg min{ ((1 ) (1 ) ) }.

j

i i j ji jb
y x b

 
    b  (A.8) 

Since most of 
4

1 jj
b

  are close to 1, it follows that 
4 2

,1
((1 ) (1 ) )i i j jj

y x b


    is close to 

4 2

,1
( )i i j jj
y x b


 . Then Eq. (A.8) is approximately equal to 

 
49 4 2

,1 1
arg min{ ( ) }.

j

i i j ji jb
y x b

 
  b  (A.9) 

By comparing Eq. (A.9) with Eq. (A.7), their forms are same. Therefore we can say that b  is near 

to b , meaning that corresponding weights in multi-contrast images are similar.  

For example, in Figs. A1a and A1b, one can see that corresponding regions in completely opposite 

contrast images generate similar weights (Table A1).  
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Fig. A1. Regression weights within local regions of completely opposite contrast images. (a) is an image; (b) is the opposite 

contrast to (a). Two pairs of image region of size 9×9 (enclosed in wireframes, marked as S1 and S2) are extracted from (a) and 

(b). Note: The data are acquired from the BrainWeb. 

 

Table A1 Regression weights within local regions of completely opposite contrast images 

Source images Regression weights b  

S1                    S2                             

(a) [0.48; 0.05; 0.06; 0.42]  [0.53; -0.11; -0.04; 0.61] 

(b) [0.47; 0.06; 0.06; 0.42]  [0.53; -0.11; -0.03; 0.62] 

    

The mathematical analysis on weights is simplified as listed below: 

Considering all the regions in Figs. A1a and A1b, we draw the weights error distribution (Fig. A2) 

which meets Eq. (10). First, most of 
2

( ) X y Xb  are very close to 0 (Fig. A2a). Besides, most of 

2
( )  X d C b  is close to 0 (Fig. A2b). Therefore, 

2
b b  approaches to 0 in most regions, 

implying that b b . This conclusion is confirmed in Fig. A2c, showing that almost 98% of 
2

b b  

lies in small values (in the range [0,0.25] ) for the tested completely opposite contrast images.  

 

 

Fig. A2. Error of regression weights on completely opposite contrast images. Weights are estimated within each pair of regions at 

completely opposite contrast images. The vertical axis represents the percentage that estimation values lies in the range of the 

horizontal axis. (a)-(c) list the frequency that 
2

( ) X y Xb , 
2

( ) X d Cb  and 
2

b b  occurs in the range of the 

horizontal axis in (a-c), respectively. 
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Complements for Main Results 

Figs. A3 and A4 are taken from a 3T Siemens Trio Tim MRI scanner. The size of T1 (TR=1370ms, 

TE=2.29ms) and T2 (TR=3200ms, TE=411ms) HR images is 256×200 (FOV=220×220 mm2, slice 

thickness=1.0mm), and they are acquired with MPRAGE and SPACE sequence respectively. 

 

 

Fig. A3. One pair of T1 and T2 MRI images acquired on 3T Siemens scanner. (a) HR of T2 image; (b) HR of T1 image; (c)-(f) 

are super-resolved images using the bicubic, NEDI, CGI, and the proposed method, respectively. 

 

 

Fig. A4. Another pair of T1 and T2 MRI images acquired on 3T Siemens scanner. (a) HR of T2 image; (b) HR of T1 image; (c)-(f) 

are super-resolved images using the bicubic, NEDI, CGI, and the proposed method, respectively. 

 


