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Abstract

Compressed sensing has shown to be promising to accelerate magnetic resonance imaging. In this new
technology, magnetic resonance images are usually reconstructed by enforcing its sparsity in sparse image
reconstruction models, including both synthesis and analysis models. The synthesis model assumes that an
image is a sparse combination of atom signals while the analysis model assumes that an image is sparse
after the application of an analysis operator. Balanced model is a new sparse model that bridges analysis
and synthesis models by introducing a penalty term on the distance of frame coefficients to the range of
the analysis operator. In this paper, we study the performance of the balanced model in tight frame based
compressed sensing magnetic resonance imaging and propose a new efficient numerical algorithm to solve the
new optimization problem. By tuning the balancing parameter, the new model achieves the solutions of three
models. It is found that the balanced model has a comparable performance with the analysis model. Besides,
both of them achieve better results than the synthesis model no matter what value the balancing parameter is.
Experiment shows that our proposed numerical algorithm constrained split augmented Lagrangian shrinkage
algorithm for balanced model (C-SALSA-B) converges faster than previously proposed algorithms accelerated
proximal algorithm (APG) and alternating directional method of multipliers for balanced model (ADMM-B).

Introduction

Magnetic resonance imaging (MRI) is an important imaging modality in clinical diagnosis to investigate
anatomy and function of the body [1-6]. It is non-radioactive, non-invasive, and has rich contrast information
such as T1 and T2. However, the data acquisition speed in MRI is fundamentally limited by physical (gradient
amplitude and slew-rate) and physiological (nerve stimulation) constraints [2].

Compressed sensing (CS) MRI has shown its strong ability to reduce the data acquisition time and earned
a lot of attentions over the last few years [2,3,7-9]. This new technology, denoted as CS-MRI, reduces the
number of measurements required by Nyquist sampling criteria and tries to reconstruct an image that is
sparse or can be sparsely represented in some transform domains, e.g. wavelets and finite difference [2, 3].
According to the CS theory, under some conditions, the number of required Fourier samples for an N-
dimensional signal with .S non-zeroes (sparsity) in some transform domain to be successfully recovered with
a dominant probability is governed by O(Slog N). This condition is much less than N when the interested
signal is very sparse (S < N) [10,11].

Orthogonal wavelets (orthogonal systems) are usually used in traditional compressed sensing MRI and
is simple and effective [2,12,13]. However, orthogonal wavelets may lead to blocky artifacts in image
reconstruction [14-17]. On the contrary, redundant wavelets, such as X-let [18-24] and others [25-31], can
significantly improve the image quality [14-17]. Some of these transforms, e.g. contourlet [18] and patch-
based directional wavelet (PBDW) [14], a simplified form of bandelet, have been investigated in CS-MRI
and shown advantages on edge reconstruction and noise removal [14,32]. Besides, researchers have utilized
the wavelet coefficients’ structure and significantly improve the image quality in CS-MRI [33,34]. But how
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to investigated these property under tight frame wavelet is unsolved and needs careful investigation which
is beyond the scope of this paper.

There are two different data models for general signal or image processing, namely, the analysis and
synthesis models with different prior assumptions [35,36]. Elad et al. studied these two models and offered a
geometric explanation of the relation between them [35]. Although the synthesis model has attracted more
attention than the analysis model in the past, recent studies show that the latter has its own advantage over
the former both theoretically [37,38] and empirically [36]. In the field of CS-MRI, Qu et al. [14,15] and Yang
et al. [39,40] have modeled their problems as analysis models and achieved satisfying results.

To bridge analysis and synthesis models, Cai et al. [41-44] proposed a balanced model. The balanced
model has been applied to image restoration including deblurring, inpainting, and astronomy image recon-
struction and solved by a proximal forward-backward splitting (PFBS) algorithm [45]. Furthermore, Shen
et al. proposed an accelerated proximal gradient (APG) algorithm to solve the balanced model in image
inpainting and deblurring [46] with an accelerating scheme that is much similar to a fast iterative shrinkage-
thresholding algorithm (FISTA) [47]. Unlike these two iterative shrinkage algorithms, Xie et al. proposed
an alternating direction method of multipliers algorithm to solve the balanced model called ADMM-B in
image inpainting and deblurring [48]. By using Sherman-Morrison-Woodbury matrix inversion lemma, their
experiments showed the much faster speed of ADMM-B than APG. Another benefit of ADMM-B is that it
allows the balancing parameter S to change from 0 to +o0o without any influence on the convergence speed.

The motivation of this paper comes from three aspects: 1) a tight frame usually outperforms its corre-
sponding orthogonal transform in CS-MRI, but many researchers in CS-MRI are not aware of the difference
between the analysis and synthesis models when tight frame is used; 2) it is still unknown how the perfor-
mance changes during the transition from the analysis model to the synthesis model in CS-MRI; 3) there
is no unified view of which model is better in general, and our observation found that the analysis model
always has the best performance in CS-MRI.

The contribution of this paper is two folded. First of all, we will explore the performance of the balanced
model for tight frame based CS-MRI, which, to the best of our knowledge, has never been investigated
before. We will discuss the impact of the balancing parameter on the reconstruction error. Secondly, we will
propose a new efficient numerical algorithm for solving the balanced model. The proposed algorithm has a
faster convergence than existing algorithms for the balanced model such as APG [46] and ADMM-B [48].
Besides, the proposed balanced model provides a unified framework to explore the performance of three
sparse models in specific applications of CS-MRI, in which case the comparison results are not known yet
before.

Methods

Ethics Statement

All human images were acquired from healthy subjects under the approval of the Institute Review Board
of Xiamen University and written consent was obtained from the participants. The data were analyzed
anonymously.

The k-space data undersampling in CS-MRI can be formulated as

y=UFz+n, (1)

where U € CM*N with M < N is an undersampling operator, F' € CV*N represents the discrete Fourier
transform, and § € CM is the noise. CS-MRI aims at reconstructing an image & € CV from the undersampled
data y € CM. This image reconstruction problem is an under-determined linear inverse problem that has
infinite solutions. Additional constraints should be introduced to obtain a unique solution that meets the
realistic magnetic resonance (MR) image priors.



Related Work
Synthesis model in compressed sensing

According to CS theory [10,11,49], a fine reconstruction of (1) is achievable by solving the following ¢;-norm
based optimization problem

& = Da, & = argmin |||y, s.t. |y —UFDal3 < o?, (2)
(a4

where D is a synthesis dictionary, « is the corresponding coefficient, & is the reconstructed MR image. o2
is related to the noise variance of the measured data. The performance of (2) is governed by

e = as|s

VS

provided that restricted isometry property (RIP) constant do5 of UF D obeys dag < v/2 — 1 [49]. Here ag
is the best approximation to a by using at most S nonzeroes. To let U F'D satisfy RIP, the undersampling
matrix U is chosen randomly, and, more importantly, the columns of D should have a small mutual coherence
in the sense of a small RIP constant [50]. Eq. (3) implies that a good reconstruction can be obtained from
(2) if a MR image is a sparse combination of atom signals which are columns of D. Models like (2) that
directly solves a are called a synthesis model.

||d—a|\2 SC@ +010', (3)

Analysis model in compressed sensing

The analysis model is
& = argmin | ¥z, st. |ly— UFz|3 <o (4)

where W is an analysis operator to sparsify the image. It is clear that the solution of (4) is an image. The

theoretical guarantee of an analysis model becomes

[z — (¥z)s
VS

provided that the rows of ¥ form a (tight) frame and UF satisfies W*-RIP with constant dog < 0.08 [29].

Note that there is no incoherence restriction on the rows of the analysis operator ¥. The analysis model is
also theoretically studied in [38] where the model is called cosparse analysis model.

& — x|z < Co + Cho, ()

Analysis model versus synthesis model

For an invertible analysis operator ¥, if we choose the synthesis dictionary as D = ¥~!, then the analysis
and synthesis models are equivalent in the sense that the optimal solutions are the same [35,36,38]. However,
for a redundant ¥, meaning that D # ¥~!, these two models are totally different [35]. The difference comes
from the fact that a signal can be synthesized from not only one but infinite number of coefficients by a
redundant dictionary [36]. However, applying the analysis operator directly to the signal, one can get a
unique coefficient called the canonical coefficient denoted as e, = Wa [51]. In a sense, there is a one-to-
one correspondence between the image and its canonical coefficient even in a redundant dictionary. Fig.
1 illustrates the relation between coeflicients and the canonical coefficient of a signal. Synthesis model
assumes that MR images can be synthesized from sparse coefficients by the dictionary, while analysis model
assumes that the canonical coefficients of MR images are sparse. With different assumptions, analysis and
synthesis models are searching for solutions in different domains, i.e. the coefficient domain and the canonical
coefficient domain, respectively [35]. Fig. 2 provides a visual illustration of this point.

Turning to the performance of these two models, we can not find a unified view in a general case. More
researchers prefer to say that these two models fit different types of datasets and it is hard to say which one
is better in a general case [25,35,36,52,53]. Nonetheless, the analysis model is reported to outperform the
synthesis model when certain systems are used, and the former is the suggested in these papers.



Balanced model

To bridge the gap between analysis and synthesis models, Cai et al. proposed a balanced model [41-44] for
tight frame systems. Let ¥ and ¥* be the analysis and synthesis operators associated with a tight frame
system. In other words, we have ¥*W = I, and generally WW* # I. Then, the balanced model in [41-44]
is as follows

PR & = argmin ||a + gll(l _wOal, st |y — ATal? < o2, (6)

where A stands for a linear degrading operator. Since ¥W¥* is the projection onto the range of ¥, the term
gH(I — WP*)|3 is the squared distance of & to the range of ¥ (or to the canonical frame coefficient), and
[ is a balancing parameter.

When 8 =0, (6) becomes

Tz =T"q, &= argmoitn lalli, st [ly— AT} < o2,
which is exactly in the form of synthesis model in (2). When 8 — oo, (6) imposes that
(I -¥THa|2=0 +— a=TTa
which means « is a canonical coefficient. Thus, (6) becomes
z="v"q, d:argmoiLnH\Il\Il*aul, st. |y — AT a3 <o

Letting = ¥*« leads to
& = argmin | Pz, st |y— Az|3 < o?,
x

which is exactly in the form of analysis model in (4). Thus, for 0 < 8 < 400, (6) is a balance between the
analysis model and the synthesis model. Fig. 2 presents the relationship of these three models.

Proposed work

To the best of our knowledge, how the balanced model performs in CS-MRI has never been investigated.
More specifically, how the balancing parameter affects the reconstruction is still unknown. Besides, there
are also needs to develop an efficient algorithm to solve the balanced model based CS-MRI.

Constrained balanced model in tight frame based CS-MRI

Orthogonal wavelets (orthogonal systems) are usually used in traditional compressed sensing MRI [2]. How-
ever, orthogonal wavelets may lead to blocky artifacts in image reconstruction [14-17]. On the contrary,
redundant wavelets, e.g. shift-invariant wavelets, can significantly improve the image quality [14-17]. Exam-
ples of such tight frames are framelet [24], curvelet [20], translation invariant discrete cosine transform [2],
and patch-based directional wavlelets [14]. Let ¥ € CP*Y with D > N be the analysis operator of a tight
frame, and then its adjoint ¥* is the associated synthesis operator. The tight frame property implies that
U*WY = J. Because D > N, the operator $W¥* is not the identity but the orthogonal projector onto the
range of ¥. Motivated by the balanced model presented in previous sections, we propose the following
constrained balanced model in tight frame based CS-MRI

& =T'a, d:argmin)\HaHl+§||(I7\P\Il*)a|\§, st. |ly—-UF¥*al < o? (7

By tuning the balancing parameter 3, one has the chance to achieve a balance between the analysis model
and the synthesis model.



Constrained split augmented Lagrangian shrinkage algorithm for balanced model (C-SALSA-
B)

A popular method for solving the analysis model (4) and the synthesis model (2) is the alternating direction
method of multipliers (ADMM) [54], which has various origins in imaging sciences and was proposed by
several authors independently under different names, e.g., the split Bregman algorithm [36,55] and the split
augmented Lagrangian shrinkage algorithm [56].

When ADMM is applied to solve the minimization arising from the proposed balanced model (7), there
are a couple of different formulations available. One formulation is to convert the constraint minimization
(7) to an unconstraint one. By Lagrangian multiplier theory, there always exists a positive number ¢ so that
(7) is equivalent to an unconstrained minimization

min el + S |(T - w®*)al3 + 5 ly - UF®"al}. (5)
By introducing an auxiliary variable z = «, this minimization is further converted to
. B * 2 d * 2 _
rrgn)\HzHl—&-gH(I—lI'\Il )a||2+§||y—UF‘Il all;, st z=a.

Then one can apply ADMM to the above minimization to get an approach for solving the balanced model
(7). This method was studied in [48] and is referred to ADMM-B throughout this paper. ADMM-B has
shown in [48] faster than other algorithms for the balanced model such as the APG method [46] for many
digital image processing tasks.

However, it is generally hard to determine the regularization parameter ¢ in (8). Larger or smaller ¢§
will cause over or under fitting of the sampled data y. Motivated by this, we propose to, instead of the
unconstrained minimization (8), solve the constrained minimization (7) directly. We introduce an auxiliary
variable z = o and obtain

min)\HzHl+§||(I7\P\Il*)a||§, st |ly—UF¥*a|?<o? z=a. (9)
Following [36,55-57], we propose to solve (9) by applying ADMM to the following minimization
min A||z|[; + §||(I —U¥Nal3, st y=UF¥'a, z=a. (10)

with an early stopping criteria ||y —U F¥*al|3 < o2. This method is referred to constrained split augmented
Lagrangian shrinkage algorithm for balanced model (C-SALSA-B), following [56]. According to [36,55-57],
C-SALSA-B produces better quality of reconstructed image than ADMM-B. The convergence of C-SALSA-B
is studied [36,57].

More precisely, the augmented Lagrangian of (10) is

B x H . P
Ly e,z hod) = N[zl + 2|1~ 9o + 2 [UF® o~y — R+ Do — = — 3
Then, ADMM for solving (10) can be written as

oy q = argming Ly, (o, 2, by, dy),
Znt1 = argming Ly, (01, 2, by, dy),
hpi1=hy — G (UF®*a, 11 — y),
dny1 =dp —0a(Qny1 — Zny1)-

The sub minimization problem w.r.t. « in the first line of (11) has an analytical unique solution

1% X Tk * 1% * *
Qni1 = ——WFU*(y + hy) +7(2n + dpn) + OF* |(1 =) — ——UU| F¥* (2, + d,), 12
"= ( ) +( ) (1—7) e ( ) (12)



where P
= — 13
p+B (13)
The proof of (12) is presented in Appendix A. When S goes from 0 to +0o, v changes from 1 to 0, and the
model changes from the synthesis one to the analysis one. The sub minimization problem w.r.t. z in the

second line of (11) is solved by a soft-thresolding
Zn41 = 7—)\/p(an+1 - dn)a
where T, (-) is the soft-thresholding operator satisfying

T+ A, ifx < =)
Txa(z) = max{|z| — X\, 0} - sgn(x) = < 0, ifr<-A<z<A,
x—N ifxz >\

for each entry of . The proposed algorithm is summarized in Algorithm 1.

Algorithm 1 C-SALSA-B
IHPUt: Y, )‘a Vs Ps My 5}17 5da hla dla zZ1

Ln=1
2: repeat
3 OQpgp1 = ﬁ\IIF*U*(y +h,) +7(zn+dy) +OF* |(1—7)I — ﬁU*U} FY¥*(z, +d,)

4 Zn41 = ﬂ/p(anJrl —dy)
5. hpi1=h, — b (UF¥* 0,41 — vy)
6: dn+1 =d, - 5d(an+l - szrl)
7 n=n+1
8: until converge
Output: ¢ = o,

Results

Experimental setup

The brain image of size 256 x 256 in Fig. 3 (a) is acquired from a healthy volunteer at a 3T Siemens Trio
Tim MRI scanner using the T2-weighted turbo spin echo sequence (TR/TE = 6100/99 ms, FOV = 220 x 220
mm?; slice thickness = 3 mm). Fig. 3 (b) is acquired from a healthy volunteer at a 1.5T Philips MRI scanner
with sequence parameters (TR/TE = 1700/390 ms with 230 x 230 mm? field of view, 5 mm slice thickness).
Fig. 3 (c) is a water phantom image acquired at 7T Varian MRI system (Varian, Palo Alto, CA, USA) with
the spin echo sequence (TR/TE = 2000/100 ms, 80 x 80 mm? field of view, and 2 mm slice thickness).

The relative £3-norm error (RLNE) defined as

RLNE — 12— 22
[E41P
is adopted to measure the difference between the reconstructed image & and the fully sampled image x [14].
Shift-invariant discrete wavelet transform (SIDWT) from Rice Wavelet Toolbox [58] is used as a typical tight
frame.

We will compare our proposed C-SALSA-B algorithm with APG [46] and ADMM-B [48]. Parameters
for these algorithms are listed in Table 1. These parameters are chosen empirically so that each algorithm
reaches the smallest RLNE while maintaining convergence speed as fast as possible. All the experiments
are done on a desktop with four Intel Cores i7-2600 CPU at 3.4GHz and 16GB of memory. All CPU time
presented in this paper are the average of 5 runs for each experiment.



CS-MRI reconstructions using analysis, synthesis and balanced models

Using the proposed model in (7), one can easily obtain analysis, synthesis, or balanced models by setting the
balancing parameter v in (13) to 0, 1 or an arbitrary value in the range (0, 1) for CS-MRI. If not specified,
the balanced model refers to v = 1/2 without loss of generality throughout this section.

The simulation results are shown in Fig. 4. We see that the reconstructed image using the balanced
model is similar to that using the analysis model, and both of them can remove the artifacts better than
using the synthesis model. The reconstruction errors RLNE indicate that the analysis model achieves error
slightly smaller than the balanced model. The synthesis model is the worst in this experiment.

Empirical convergence of C-SALSA-B algorithm

The convergence curve of the C-SALSA-B is predicted in Fig. 5, and the comparison of the convergence of
C-SALSA-B with APG and ADMM-B is plotted in Fig. 6. From Fig. 5, we see that The objective function
and the value of the constrained term in (7) approach to a stable state after certain initial iterations, which
is consistent to C-SALSA algorithm in [56](Fig.4(a)). As shown in Fig. 6, intermediate reconstruction
error RLNEs of the proposed C-SALSA-B drops faster than that of APG and ADMM-B. Table 2 shows the
computation time of APG, ADMM-B and the proposed C-SALSA-B using T2 weighted brain image dataset
in Fig. 3(a). Obviously, the proposed C-SALSA-B algorithm converges faster than the other two algorithms.

Discussion

Impact of the balancing parameter on reconstructed errors

Since the balanced model includes all v € (0,1) in (7), it is necessary to explore the impact of the balancing
parameter v defined in (13) on the reconstructed errors. The results are shown in Fig. 7. It implies that
RLNE increases monotonically as v goes from 0 (analysis model) to 1 (synthesis model) except one singular
point at 0.95.

Reconstructed errors for different acceleration factors

We variate the percentage of sampled data goes from 15% to 100% and plot in Fig. 8 the curve of RLNEs by
different models against the sampling ratio. We observe that the analysis model always achieve the lowest
errors and the synthesis model leads to the highest ones. Reconstruction errors using the balanced model is
between other two models.

Experiments on other tight frames

The behaviors of these three models might depend on the tight frame in use. Here, we compare the per-
formance of the three models on a patch-based directional wavelets (PBDW) [14], contourlets [18,32] and a
translation invariant discrete cosine transform (TIDCT) [2]. The reconstructed image using PBDW is shown
in Fig. 9. The same phenomenon was observed that reconstructed images using the analysis and balanced
models are comparable and both of them contain less artifacts than using the synthesis model. The RLNE
criteria also indicates that the analysis model and the balanced model are comparable and these two models
achieve lower error than the synthesis model. How the balancing parameter affects the reconstructed errors
in PBDW, contourlets and TIDCT are shown in Fig. 10. The trends are similar to that of SIDWT in Fig.
7 but the shapes are a little bit different.

Comparisons of C-SALSA-B to APG and ADMM-B for more MR images

In this section, we compare our proposed C-SALSA-B to APG and ADMM-B algorithms for more T2 MR
images which are different slices of the same dataset as Fig. 3 (a). From Fig. 11, the same phenomenon was



observed that the proposed C-SALSA-B converges faster than ADMM-B and APG.

Comparison of C-SALSA-B to Fast Composite Splitting Algorithm (FCSA)

In this section, we conduct another experiment to compare our proposed C-SALSA-B algorithm for analysis
(v = 0), synthesis (v = 1) and balance (v = 1/2) models to Fast Composite Splitting Algorithm (FCSA)
proposed in [13]. Fig. 12 shows that while FCSA converges faster than proposed C-SALSA-B algorithm, C-
SALSA-B reaches to the lower RLNE error. Note that the parameter 8 in FCSA has been tuned to be 0.001,
which fits for tight frame wavelet and leads to the lowest reconstruction error RLNE. The code of FCSA
used in the experiment is downloaded from Dr. Junzhou Huangs website at http://ranger.uta.edu/ huang,/.

Experiments on orthogonal wavelets

For an orthogonal transform, the analysis, synthesis and balanced models yield the same results in theory [35].
To testify this, we conduct an experiment for the orthogonal wavelets archived in the Rice Wavelet Toolbox.
The result in Fig. 13 shows reconstruction error is not affected by the balancing parameter, indicating the
same results are obtained by synthesis, analysis and balanced models.

Conclusion

A balanced model for tight frame based compressed sensing MRI (CS-MRI) and an efficient numerical
algorithm to solve it are proposed in this paper. This new model provides a unified framework to discuss
the performance of the analysis and synthesis sparsity models as well as solutions between them. The
impact of the balancing parameter on the reconstructed error has been extensively explored. Experiments
on magnetic resonance images show that the balanced model can be no better than the analysis model
whatever a balancing parameter is optimized. This observation does not change with different forms of
tight frame tested in this paper. Results indicate that the analysis model is preferred for tight frames based
CS-MRI modelings unless the advantages of the balanced or synthesis model are observed in practice. The
proposed C-SALSA-B algorithm is observed to converge faster than typical APG and ADMM-B algorithms
in our experiments. However, our tests are limited by certain sparsifying transforms or magnetic resonance
images. The power of balanced model for other frames or even other applications needs further investigation.
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Figure Legends

Figure 1. Difference between the coefficients and the canonical coefficient of a signal.

Figure 2. The relation of analysis, synthesis, and balanced models

11



Figure 3. Images used in simulations. (a) is a T2- weighted brain image, (b) is a T1- weighted brain
image, (c) is a water phantom image, (d) is a k-space undersampling pattern with 40% data are sampled.

Figure 4. Reconstructed T2 weighted brain images using analysis, balanced and synthesis
models. (a) the fully sampled image; (b)-(d) are reconstructed images using analysis, balanced and
synthesis models, respectively; (e)-(g) are 6 times scaled reconstruction errors for images in (b)-(d),
respectively. The RLNEs for (b)-(d) are 0.114, 0.122 and 0.128.

Figure 5. Empirical convergence of C-SALSA-B solving Eq. (12). Left is the objective function,
right is the value of the constrained term.

Figure 6. Reconstruction error RLNEs in the iterations using different algorithms.

Figure 7. Impact of the balancing parameter v on reconstructed errors for datasets in Fig. 3.

Figure 8. Comparisons of three models for different percentages of acquired k-space data.

Figure 9. Comparisons on PBDW-based reconstructed images for three models. (a) the fully
sampled image; (b)-(d) are reconstructed images using analysis, balanced and synthesis models,
respectively; (e)-(g) are 6 times scaled reconstruction errors for images in (b)-(d), respectively. The RLNEs
for (b)-(d) are 0.085, 0.086 and 0.114.

Figure 10. Impact of the balancing parameter v on reconstructed errors when PBDW,
contourlets and TIDCT are used as tight frames.

Figure 11. Comparisons of C-SALSA-B to APG and ADMM-B for more MR images.

Figure 12. Comparison of FCSA and C-SALSA-B.

Figure 13. Impact of the balancing parameter + on reconstructed errors when orthogonal
wavelets is used.

12



Tables

Table 1. Parameters for algorithms used in this paper

Algorithms APG ADMM-B C-SALSA-B
A =0.05
A = 0.005 A=001 | ~v=058=1)
Parameters | k=1(8=1) | a=0.5(8=1) p=1
L=rk+1=2 w=1 nw=1
dg=1 o =1
dg=1

Table 2. Comparison of different algorithms. The number of iterations in each algorithm is

chosen to reach the stable state of RLNE according to Fig. 6

Algorithm

# of iterations

APG
ADMM-B
C-SALSA-B

80
100
30

CPU time in seconds | RLNE
16 0.119
13 0.128
6 0.123
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