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Abstract: Compressed sensing magnetic resonance imaging has shown great abilities to 

accelerate the magnetic resonance imaging if an image can be sparsely represented. How to 

sparsify the image seriously affects the reconstruction quality of images. In the present study, 

a graph-based redundant wavelet transform is introduced to sparsely represent magnetic 

resonance images in iterative image reconstructions. Using the l1 norm regularized 

formulation of the problem solved by an alternating-direction minimization with continuation 

algorithm, experimental results demonstrate that the proposed method outperforms several 

state-of-the-art reconstruction methods in removing artifacts, and achieves lower 

reconstruction errors on the tested datasets. 
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Highlights 

 

 A graph-based redundant wavelet transform (GBRWT) to sparsely represent MR 
images is proposed. 

 GBRWT-based undersampled magnetic resonance image reconstruction method 
is proposed. 

 Simulation results with added noise demonstrate a superior de-noising ability of 
the proposed method. 

 Simulation results on in vivo data demonstrate that the proposed method achieves 
lower reconstruction error and higher visual quality than several state-of-the-art 
CS-MRI methods. 
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1. Introduction 

Magnetic resonance imaging (MRI) is widely used in medical diagnoses because of its high 

resolution and noninvasiveness. However, physical conditions, e.g., gradient amplitude and 

slew-rate, and physiological conditions such as nerve stimulation, limit data acquisition 

speeds. Many researchers focus on accelerating MRI (Akcakaya et al., 2012; Chang and Ji, 

2010; Chen et al., 2010; Jim and Zhi-Pei, 2001; Singh et al., 2011; Xiuquan et al., 2003). 

Compressed sensing MRI (CS-MRI) has shown to be promising to accelerate data acquisition 

by collecting fewer data than those required by Nyquist sampling theorem (Jacob, 2009; 

Weller et al., 2013; Ying and Ji, 2011). The CS can be further combined with parallel imaging 

to achieve higher acceleration factors (Huang et al., 2012; Weller et al., 2011). In general, 

three requirements exist in a successful CS application: sparse representation (Wang et al., 

2014; Zhang et al., 2012), incoherent undersampling artifacts (Greiser and von Kienlin, 2003; 

Tsai and Nishimura, 2000), and an effective nonlinear reconstruction algorithm (Aelterman et 

al., 2011; Lustig et al., 2008; Majumdar and Ward, 2011, 2012; Majumdar et al., 2013; Yue et 

al., 2012).  

In CS-MRI, finding an optimally sparse representation for magnetic resonance (MR) 

images is important because the reconstruction error is usually lower if the image 

representation is sparser (Qu et al., 2012; Qu et al., 2014; Qu et al., 2010; Ravishankar and 

Bresler, 2011). Conventional transforms, e.g., discrete cosine transform, total variation, 

wavelet transform, have been used to sparsely represent MR images in (Chaari et al., 2011; 

Khalidov et al., 2011). These methods represent an image sparsely by using predefined bases, 

which exhibit no difference among images. The image reconstruction may become 

unsatisfactory when the data are highly undersampled because of the insufficiently sparse 

representations (Qu et al., 2012; Ravishankar and Bresler, 2011). 

Recently, patch-based methods have attracted considerable interest in CS-MRI because 

adaptively sparse representations can be trained with easy manipulations on patches 

(Akcakaya et al., 2011; Akcakaya et al., 2014; Maggioni et al., 2013; Ning et al., 2013; Qu et 

al., 2012; Qu et al., 2014; Ravishankar and Bresler, 2011; Wang and Ying, 2014; Yue et al., 
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2014). For example, the geometric edge of a patch has been applied to train the adaptively 

sparse representations (Ning et al., 2013; Qu et al., 2012). Assuming that image patches are 

linear combinations of element patches, Aharon et al. have used K-SVD to train a patch-based 

dictionary (Aharon et al., 2006; Ravishankar and Bresler, 2011). Both methods significantly 

improve the image reconstruction over the predefined basis method (Ning et al., 2013; Qu et 

al., 2012; Ravishankar and Bresler, 2011). However, these methods sparsely represent each 

patch separately and neither of them considers the relationship, e.g., differences, among 

patches in the whole image. This relationship offers us an opportunity to take it into account 

to further remove artifacts in CS-MRI. 

Recently, a graph is formed by viewing image patches as vertices and their differences as 

edges, and a shortest path on the graph is found to minimize the total difference of all image 

patches (Ram et al., 2011, 2012). This graph enables us to produce a smoother signal if a 

proper shortest path can be estimated. In this article, we introduce this graph-based transform 

into CS-MRI aiming at removing artifacts introduced by the k-space undersampling. Since 

smoother signals usually lead to sparser representation when wavelet coefficients are applied, 

the introduced transform is also called graph-based redundant wavelet transform (GBRWT) 

because it combines graph and redundant wavelets. 

In the present study, we assume that a proper reference image is available in CS-MRI. All 

patches are reordered according to a short path on the graph, and a sparse representation is 

achieved by applying redundant wavelets to the smooth signal organized by traveling along 

this short path. Then, GBRWT is incorporated into an l1-norm-based iterative MR image 

reconstruction. 

The remainder of this article is organized as follows: Section 2 will present the 

implementation of GBRWT in MR images and the graph-based reconstruction model in 

CS-MRI. Main results on realistic MR imaging data will be given in sections 3. Discussions 

are presented in section 4. Finally, section 5 concludes this work and points out the future 

work. 
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2. Methodology 

2.1. Conventional CS-MRI  

Undersampled k-space data from an MR imaging scanner can be denoted by 

Uy = F x +ε ,         (1) 

where x  is the discrete image to be reconstructed; M∈y   is the acquired k-space data;

M∈ε   denote noises; and M N×∈UF = UF   is the undersampling and Fourier transform, 

and directly relies on the undersampling scheme. An image is reconstructed by enforcing the 

sparsity of the image according to 

2

21
arg min

2
H λ + − 

 
Ux

Ψ x y F x ,     (2) 

where HΨ  transforms image x  from spatial domain to sparse coefficients;
1

⋅  stands for 

the l1 norm, which promotes the coefficients sparsity; 
2

⋅  is l2 norm which enforces data 

fidelity between reconstructed image and undersampled measurements; and λ  controls the 

tradeoff between the sparsity and data fidelities. 

 Compared with traditional sparsifying transform, e.g., wavelets, which use predefined 

bases or dictionaries to sparse represent images, adaptive sparsifying transforms are tailored 

for a given image. As mentioned above, the geometric direction of each patch can be used to 

improve edge reconstructions (Ning et al., 2013; Qu et al., 2012), and K-SVD trains a 

dictionary to sparsely represent all patches (Ravishankar and Bresler, 2011). These methods 

have shown their unique properties in image reconstruction. But they do not consider the 

relationship, e.g., differences, among patches in the whole image. This relationship may help 

us to further remove artifacts in CS-MRI. Since wavelet transform can lead to sparser 

representations for smoother signals, we turn to produce smooth signals by incorporating 

prior knowledge of patch relationships. In the following text, a graph structure of image 

patches is constructed to provide adaptive sparse representations of a smooth signal in 

CS-MRI. 
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2.2. GBRWT-based CS-MRI  

2.2.1. Graph based redundant wavelet transform 

The wavelet transform provides sparse representations for piecewise smooth signals. 

However, if the signal does not satisfy this property, it may be suboptimal to apply wavelets 

to sparsify signals. This limitation encourages us to construct a new transform, which can 

adaptively make non-regular signals smoother first. For a weighted graph, where vertices 

denote signal points and edges denote differences of signal points, a shortest path that visits 

vertices will produce a smooth signal. If image pixels can be reorganized to be smoother 

according to a graph, sparser representations will be achieved by employing the wavelet 

transform. 

Patch-based graph  

Consider an image with size N N×  denoted as 1N ×∈x  . A weighted graph 

(Skiena, 2008) can be formed by assigning image pixels to be vertices, which are connected 

by edges indicating pixel differences. By finding a shortest path, which supplies new orders of 

pixels and will be illustrated below, a smoother signal will be produced if image pixels are 

permuted following the path. Therefore, wavelets can provide sparse representations of 

reordered pixels, although original pixels are non-smooth.  

 

Fig. 1 Illustrative weighted graph of an MR image. (a) an MR image; (b) the process of dividing an 

image to patches; (c) a weighted graph. Vertices are image patches in B, and the weight denotes the 

Euclidean distance between patches. Note that these distances are used to explanatorily express 

distances but not real values. 
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A ground-truth-reference image to extract the path information exactly is unavailable in 

CS-MRI since k-space data are undersampled. Pixels are usually contaminated by noises and 

aliasing artifacts. Thus, measuring the similarity of pixels is impractical. Under the 

assumption that the distance between two pixels can be estimated by the distance between 

two patches whose centers are these two pixels, a graph (Fig. 1(c)) which is expected to be 

insensitive to noises and artifacts will be generated instead. At location ( , )i j , a vertex of the 

graph is a patch centered at ( , )i j . A patch with size ρ ρ×  is denoted as 1
m

ρ×∈b  in 

the amplitude image. The distance ,m nw  between vertices is measured by  

, ( , )m n m n m nw w= = −b b b b  ,      (3) 

where ,m nw  indicates the intensity based similarity between thm   and thn  patches and a 

smaller ,m nw  implies less differences (Ram et al., 2011, 2012).  

 Pixels are reordered to be smooth by patch reordering. Patches are divided with overlaps 

and periodical boundary conditions (Fig. 1(b)). Correspondingly, each pixel is the center of 

one patch with the same overlapping factor. The slide distance between two neighboring 

patches is set to be 1l = . The overlapping factor is defined as: 2c lρ= (Qu et al., 2012), 

where ρ  is the aforementioned patch size. The overlapping strategy allows fast 

computations in reconstruction algorithm which will be explained in section 2.2.2. 

Finding the permutation 

Minimum-cost patch orders that visit all the vertices exactly once imply a permutation of 

image pixels to be smoother when they are applied to a corrupted image. They are actually 

obtained by finding the ‘shortest possible path’ of the patch-graph. This finding is normally 

denoted as travelling salesman problem and is most notorious NP-hard problem, which is 

computation exhaustive. Ram et al. proposed a simplified algorithm to attain an approximate 

solution (Cormen et al., 2001; Ram et al., 2011, 2012, 2013), which is listed in Algorithm 1. 

We take the algorithm directly to pull through this problem. 

To verify the sparsifying capability of GBRWT, we perform the same redundant wavelet 
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transform on pixels with the original order and new orders obtained with the shortest path. 

The decay of coefficients shown in Fig. 2 demonstrates that coefficients of new orders 

decrease much faster than those of the original order. Therefore, the graph-based transform 

leads to sparser representations by reordering signals than the wavelet transform that applies 

to signals of the original order. 

 

Fig. 2 Decay of wavelet coefficients. (a) an MR image size of 256×256; (b) shows the decay of 

coefficients by performing redundant wavelets on original pixels and graph-based reordered pixels. 

 

Implement GBRWT 

Based on the smoothing process using trained orders, reordered pixels of an MR image 

(Fig. 3) are expected to be sparsely represented with a redundant 1D wavelet (Shensa, 1992). 

Here, high-pass and low-pass filters in wavelet transforms are with no decimators thus each 

wavelet subband have the same length with the original signal. Incorporating with the 

permuting process, we modify the wavelet transform by rearranging signals before filtering 

them at each decomposition level. Correspondingly, graphs are constructed for wavelet 

coefficients in each subband. The inverse wavelet transform is implemented from finest to 

coarsest levels.  
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Fig. 3 Reorder image pixels according to new orders. (a) the original image; (b) the reordered image 

pixels. 

 

An image x  is treated as a 1D signal in GBRWT, and the 1D wavelet is performed on 

this signal to achieve a sparse representation. Different patch-graphs are constructed in each 

wavelet subband, and different permutation matrices H
ip  can be obtained. In other words, 

new orders of coefficients in the thi subband can be drawn from these patch graphs. For a g

-level GBRWT, 1{ , }H H
g

H = p , pP   denotes permutation matrices in all decomposition 

levels. We use HΨ  and ( )HPΨ  to denote 1D wavelet transform and the reordered 1D 

wavelet transform. Therefore, the implementation of GBRWT on the image x can be 

expressed as ( ) HPΨ x . Instead of reordering image pixels, patches in the graph are permuted 

without increasing complexities. Hence, we have a Nρ ×  matrix that contains all N

-column-stacked patches inside the image x  with a maximum overlapping factor. Rows of 

the patch matrix can be seen as shifted versions of the image. We denote each version of 

image as H
j jx = R x , where { }

1,

H
j j ρ=

R
 represents the original order of the shifted version. 

The jR  satisfies H
j j =R R I , which implies that each shifted version will be restored by 

placing pixels to its original place. Note that: 1) the middle row is occupied by image pixels 
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reshaped as a 1D signal; 2) other rows are occupied by 1ρ −  shifted versions of the image; 

3) ρ  versions of the image can be reconstructed. These reconstructed images can be 

averaged to remove the redundancy. 

2.2.2. Undersampling and reconstruction based on GBRWT 

With the aforementioned GBRWT, shifted versions of the image are obtained with 

additional redundancy, and the reordering-and-decomposition is applied on shifted versions of 

the image. We make use of these shifted versions to improve the reconstruction accuracy 

without increasing the computation complexities. Therefore, the MRI reconstruction model is 

modified as 

 
2

21
1

argmin ( )
2

H
j

j

ρ λ
=

 
+ − 

 
 Ux

PΨ x y F x ,     (4) 

where , 1, ,
j

H
j j ρ==x R x  denotes shifted versions of the image; ( )HPΨ denotes the 

reordering-and-decomposition procedure, which works on all shifted version images in the 

same way, or for convenience, 

 
2

21
1

arg min ( )
2

H
j

j

ρ λ
=

 
+ − 

 
 U

x
R PΨ x y F x

,

 (5) 

which is over-relaxed with a variable ( )H
j jα = R PΨ x  to become 

2 2

21 2,
1

min ( ( ) )
2 2j

H
j j j

x
j

x
ρ

α

β λ
=

+ − + − Uα α R PΨ x y F .    (6) 

When β → +∞ , expression (6) approaches (5) (Daubechies et al., 2004; Junfeng et al., 

2010). In the expression (6), β  is fixed during each inner iterative loop and then is 

increased continually during each outer loop. The continuation strategy of β speeds up the 

convergence rate, and has been proved in (Junfeng et al., 2008). When β  is fixed, 

expression (6) can be computed by two alternating steps: 

1) Fix x , jα is computed via soft-thresholding 
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1

(( ) , ).H
j jSα

β
= R PΨ x  (7) 

2) Fix all { 1, , }j j ρ=α   and compute 

 
2 2

22
1

min ( ( ) ) .
2 2

H
j j

j

ρ β λα
=

− + − Ux
R PΨ x y F x     (8) 

The minimum is given by 

 
1

1

( )

.

H H H H
j j

j

H H H H
j j

j

ρ

ρ

β λ

β λ

=

=

+ ×

= +





U U

U

R PΨΨ P R F F x

R Ψ P α F y

     (9) 

The wavelet transform is chosen to be a tight frame, thus satisfying H =ΨΨ I . The 

reordering of pixels is a forward and backward process, thus satisfying H =PP I . When the 

image is divided to patches, each pixel appears with same frequencies. Consequently,

H
j j = ΛR R I  is satisfied. Meanwhile, H

U UF F can be expressed as H HF U UF . Equation (9)

becomes  

 ( ) ,H H H
αβ λ β λΛ + = + UI F U UF x s F y       (10) 

 
1

.j j
j

ρ

α
=

=s R Ψα  (11) 

Since ,H Hβ β βΛ = Λ = ΛI F F F F  Eq.(10) is further derived as 

 ( ) ,H H H
αβ λ β λΛ + = + UF U U Fx s F y  (12) 

leading to 

 1( ) ( ).H H H
αβ λ β λ−= Λ + +x F U U Fs U y  (13) 

Therefore, the solution x  can be obtained with fast Fourier transform and entry 

multiplication on vectors. However, if pixels appear with different frequency, H
j j = ΛR R I  

will be a diagonal matrix with different values of diagonal entries. Then, 
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1

( )H H H H
j j

j

ρ

β λ
=

+ U UR PΨΨ P R F F  cannot be diagonalized, and we must solve Eq. (9) with 

the conjugate gradient algorithm, which will be time consuming. The proposed 

GBRWT-based MRI reconstruction is shown in Algorithm 2. 

 

 

Fig. 4 Flowchart of GBRWT-based MRI reconstruction. The top right block diagram indicates the flow 

chart to find the shortest path in patch-graphs to find new orders. 

 

We use the reconstructed image from conventional CS-MRI as the reference image to 

construct the graph and train new orders to permute pixels as shown in the flow chart (Fig. 4) 

to reconstruct MR images. A shift invariant discrete wavelet transform (SIDWT) (Baraniuk et 

al., 2011) is utilized to sparsely represent MR images in conventional CS-MRI. The reason of 

choosing SIDWT lies in that SIDWT can mitigate blocky artifacts introduced by orthogonal 

wavelet transform (Baker et al., 2011). Simulation results show that optimizing the graph 

using the first iteration reconstructed image can further improve the result, which is consistent 

to the observation in (Qu et al., 2012). Therefore, the GBRWT is conducted twice in the flow 

chart. 

3. Results 
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Fig. 5 Gold standard images used in the experiment. Images in the top row are used for Cartesian 

sampling and bottom row mainly for 2D undersampling. 

 

To evaluate the performance of the presented method, we use 3 datasets in experiments. 

All k-space data are acquired on real MRI scanners. Dataset 1 (Fig. 5(a-b, e-h))are acquired 

from a healthy volunteer at a 3T Simens Trio Tim MRI scanner using the T2-weighted turo 

spin echo sequence (TR/TE = 6100/99 ms, FOV= 220×220 mm, slice thickness=3 mm). 

Dataset 2 (Fig. 5(c-d)) are acquired from another healthy volunteer at a 1.5T Philips MRI 

scanner with fast field echo sequence (TR/TE = 1700/390 ms, FOV= 230×230 mm, slice 

thickness=5 mm). Dataset 3 (Fig. 10(a)) are acquired from Simens MRI scanner using a turbo 

spin echo sequence (TR/TE=2000/9.7ms, FOV=230×187 mm, slice thickness=5mm).These 

data are done with SENSE reconstruction with a reduction factor 1 to compose full k-space of 

gold standard images, which will be used for emulating the single channel MRI. These gold 

standard images are shown in Figs. 5 and 10. The signal-to-noise ratio (SNR) is defined as 

 10 log10( )SNR u δ= ， (14) 

where u is the mean of image density and δ  is the standard deviation of the noise extracted 

from the image background. The SNR is measured on the magnitude of the image.  

To demonstrate the efficiency of the proposed method persuasively, we employ the 

relative l2 norm error (RLNE) to measure reconstruction errors. The RLNE is defined as 
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ˆ

ˆ( )e
−

=
x x

x
x




，        (15) 

where x̂ is the reconstructed image and x  denotes the full sampled data. A smaller RLNE 

implies higher consistencies between reconstructed and full sampled images.  

Meanwhile, structure similarity index measure (SSIM) (Zhou et al., 2004) is introduced 

as a metric in this article. The SSIM is a widely used image quality assessment when a 

reference is available. We have full sampled images as references in this work. The SSIM on 

two corresponding local windows (one is from reference and the other to be assessed) is 

defined as  

1 2
2 2 2 2

1 2

(2 )(2 )
( , )

( )( )
a b ab

a b a b

C C
SSIM a b

C C

μ μ σ
μ μ σ σ

+ +=
+ + + + ,    (16) 

where aμ is the mean intensity ofa ; bμ  the mean intensity of ;b 2
aσ  the variance of a , 

and 2
bσ  the variance of .b Constants 1C  and 2C  are included to avoid instabilities when 

the denominator is very close to zero. For the quality assessment of the entire image, mean 

SSIM (MSSIM) is utilized instead. The MSSIM is defined as  

 
1

1
( , ) ( , )

M

i i
i

MSSIM A B A B
M =

=  ,      (17) 

where A and B are the reference and the reconstructed image respectively; Ai and Bi  are 

contents at i-th local window; M the number of local windows. Higher MSSIM values 

indicate stronger detail preservation in reconstruction.  

Cartesian undersampling (Fig. 6) is chosen in our simulations because it is most widely 

used in practice. To investigate the performance of the GBRWT-based MRI reconstruction 

algorithm, we have compared GBRWT with SIDWT, which is a typical sparsifying transform, 

and patch-based directional wavelets (PBDW) (Qu et al., 2012), which is a recently proposed 

adaptive sparse representation of MR image patches. We also compared the proposed method 

with state-of-the-art methods, including K-SVD based dictionary learning MRI (DLMRI) 

(Ravishankar and Bresler, 2011), and wavelet tree-structured MRI (WaTMRI) (Chen and 
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Huang, 2014) in Section 4.3. Default parameters of these methods are used in image 

reconstructions. 

 

 

Fig. 6 Undersampling artifacts. (a) sampling pattern with undersampling rate 35%; (b) the full sampled 

image; (c) image with undersampling artifacts with zero-filling the k-space. 

Typical settings of the proposed GBRWT-based MRI reconstruction method are: patch 

size 4×4 with a overlapping factor c=16 and 5 levels GBRWT decomposition for a 256×256 

image. Daubechies wavelet with 4 decomposition levels is utilized for SIDWT. The 

PBDW-based reconstruction is carried out with its typical settings. Reconstructed images 

obtained from SIDWT-based CS-MRI are chosen as references for both PBDW and GBRWT. 

Optimizing on PBDW and GBRWT is conducted twice to gain performance improvements as 

shown in Fig. 4. 

Simulation results show that the proposed method outperforms SIDWT and PBDW. 

Reconstruction errors in Fig. 7(f-h) indicate that the proposed method exhibits better intensity 

fidelities and edge-preserving capabilities. Furthermore, SIDWT and PBDW lead to obvious 

artifacts in the background of reconstructed images in Fig. 7(b) and (c). These artifacts are 

hardly observed in using GBRWT as shown in Fig. 7(d).  
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Fig. 7 Comparisons of SIDWT, PBDW and GBRWT-based reconstructions. (a) the full sampled image; 

(b-d) reconstructed images based on SIDWT, PBDW and GBRWT; (e) sampling pattern with 

undersampling rate 31%; (f-h) reconstructed errors (scaled 5x). 

 

Table 1 shows RLNE, SNR and MSSIM for reconstructed images in Fig. 7. These 

criteria indicate that the proposed method recovers images most faithfully since it attains the 

highest MSSIM and SNR, as well as lowest RLNE.  

Table 1 Evaluation criteria on image in Fig.7 using different methods. 

Reconstructed
images SNR MSSIM RLNE

Fig. 7 (b) 14.88 0.8984 0.1431

Fig. 7 (c) 16.76 0.9168 0.1153

Fig. 7 (d) 17.72 0.9376 0.1033

4. Discussions 

4.1. Different undersampling rates 

The GBRWT leads to lower reconstruction errors than PBDW and SIDWT, as shown in 

Fig. 8(a) and (b) when data are limited (the undersampling rate is lower than 35%). The 

improvement of reconstruction is more pronounced in Fig. 8(a) than in 8(b) for the proposed 

method. The reason may lie in that GBRWT makes use of smoothness more efficiently, 

because the corresponding source image in Fig. 5(a) is smoother than the latter. 
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Fig. 8 RLNEs change with undersampling rate. The reference image of PBDW and GBRWT is the 

same SIDWT-based reconstructed image. Source images of (a-b) are Fig. 5(a) and (f). 

 

4.2. With added noise 

To test the performance of the proposed reconstruction method in noisy conditions, we 

simulate noisy data by adding Gaussian white noises with variance 2 0.02σ =  on real and 

imaginary parts of k-space data. The SIDWT-based reconstructed image is adopted to be the 

reference image both in PBDW-based and in GBRWT-based methods.  

 

 

Fig. 9 Reconstructed images in noisy conditions. (a) the full sampled image with added noise; (b-d) 

reconstructed images using the proposed method, PBDW and SIDWT, respectively. The SNRs of (b-d) 

are 16.86, 14.97 and 14.06, respectively. 

 

As shown in Fig. 9, GBRWT is observed to better suppress noises and artifacts than other 

methods. Noticeable noises exist in zoomed-in regions in reconstructed images based on 

SIDWT and PBDW visually. The SIDWT-based reconstructed image shows clear artifacts and 
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nearly loses the detail, and the reconstructed image using PBDW generates stripe-like 

artifacts as shown in the zoomed-in region in Fig. 9(c). The lowest reconstruction error is 

achieved using GBRWT, and the improvement of SNR is approximately 2dB. Therefore, 

GBRWT outperforms other methods when data are corrupted with noises.  

4.3. Comparison with state-of-the-art methods 

In this section, we compare the proposed method with dictionary learning MRI (DLMRI) 

(Ravishankar and Bresler, 2011), which is based on K-SVD decomposition, wavelet 

tree-structured MRI (WaTMRI) (Chen and Huang, 2014), which enforces the sparsity based 

on quadtree structures of wavelet coefficients, and PBDW (Qu et al., 2012), which is a 

patch-based directional wavelet transform that makes use of geometric information in patches. 

Default parameters of these methods are used in image reconstructions. 

 

 

Fig. 10 Reconstructed images and errors in phantom experiment using Cartesian sampling with 27% 

data. (a) fullsampled image; (b-e) reconstructed images based on WaTMRI, DLMRI, PBDW and 

GBRWT respectively; (f) undersampling pattern;(g-j) reconstruction errors (scaled 5x). 

 

Reconstructed images in Figs. 10 and 11 imply that the proposed method outperforms 

other methods in terms of removing aliasing artifacts as well as preserving edges. 

Reconstructed images in Fig. 10(b-d) show that the proposed method preserves edges much 

better than DLMRI and WaTMRI do. Remarkable improvements over PBDW are observed 

since image errors using PBDW are brighter than those of the proposed method. Zoomed-in 
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regions in Fig. 11(b, d-e) imply that aliasing artifacts using the new method have been better 

suppressed than those using other methods, and errors in Fig. 11(h) and (j) imply that the 

GBRWT has better edge preserving capabilities than DLMRI. Meanwhile, evaluation criteria 

listed in Table 2 imply superior performances of the proposed method, and remain the best in 

the tested dataset. 

 

Fig. 11 Reconstructed images and errors using Cartesian sampling with 31% data. (a) full sampled 

image; (b-e) reconstructed images based on WaTMRI, DLMRI, PBDW and GBRWT respectively; (f) 

undersampling pattern; (g-j) reconstruction errors (scaled 5x). 

 

Table 2 Comparison with the state-of-the-art methods when31% data are used in Cartesian sampling. 

Images 
WaTMRI DLMRI PBDW GBRWT 

SNR MSSIM RLNE SNR MSSIM RLNE SNR MSSIM RLNE SNR MSSIM RLNE 

Fig. 5(a) 12.59 0.8561 0.1424 14.27 0.8650 0.1414 17.12 0.9338 0.1012 17.98 0.9527 0.0917 

Fig. 5(b) 15.23 0.8744 0.1119 17.24 0.8880 0.1053 19.52 0.9523 0.0807 20.60 0.9683 0.0709 

Fig. 5(c) 8.26 0.7204 0.1822 18.04 0.8739 0.0820 20.99 0.9490 0.0592 21.54 0.9593 0.0544 

Fig. 5(d) 9.20 0.6114 0.2567 17.79 0.8634 0.0955 19.26 0.9195 0.0806 19.98 0.9315 0.0742 

Fig. 5(f) 13.06 0.8692 0.134 14.53 0.8650 0.1364 16.56 0.9331 0.1064 17.59 0.9481 0.0943 

4.4. 2D Undersampling  

In practice, 2D undersampling could be useful for 3D MR imaging when 2D phase 

encodings are available and 2D undersampling are applicable. However, we focus on 2D MR 

imaging in the present study. As the benefit of CS is usually seen in 2D undersampling, we 

implement 2D undersampling in simulation in this section. Reconstructed images in Figs. 12 

and 13 imply that GBRWT preserves edges better than DLMRI, WaTMRI and PBDW when 
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pseudo radial sampling and 2D random undersampling are employed. Meanwhile, 

reconstructed errors of the proposed method with lowest brightness imply that GBRWT-based 

CS-MRI keep data fidelity best. Criteria listed in Tables 3 and 4indicate that the proposed 

method achieves highest SNRs and MSSIMs, and lowest RLNEs in the tested dataset. In 

summary, the proposed method performs better both in visual quality and reconstructed errors 

when 2D undersampling is implemented. 

 

Fig. 12 Reconstructed images and errors with 22% data are used in pseudo radial sampling. (a) full 

sampled image; (b-e) reconstructed images based on WaTMRI, DLMRI, PBDW and GBRWT 

respectively; (f) undersampling pattern; (g-j) reconstruction errors (scaled 5x). 

 

 

Fig. 13 Reconstructed images and errors with 20% data are used in 2D random sampling.(a) full 

sampled image; (b-e) reconstructed images based on WaTMRI, DLMRI, PBDW and GBRWT 

respectively; (f) undersampling pattern; (g-j) reconstruction errors (scaled 5x). 
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Table 3 Undersampling and reconstructionwhen 22% data are used in pseudo radial sampling. 

Images 
WaTMRI DLMRI PBDW GBRWT 

SNR MSSIM RLNE SNR MSSIM RLNE SNR MSSIM RLNE SNR MSSIM RLNE

Fig. 5(e) 16.14 0.8609 0.1302 14.09 0.6949 0.1649 17.45 0.9122 0.1120 18.24 0.9281 0.1023

Fig. 5(f) 12.80 0.8452 0.139 12.27 0.6988 0.1737 16.09 0.9262 0.1151 16.96 0.9406 0.1032

Fig. 5(g) 12.93 0.8362 0.1286 13.02 0.7137 0.1583 17.27 0.9280 0.1002 18.07 0.9408 0.0902

Fig. 5(h) 14.15 0.8767 0.1112 13.51 0.6826 0.1523 18.76 0.9476 0.0860 20.11 0.9638 0.0728

Table 4 Undersampling and reconstruction when 20% data are used in 2D random sampling. 

Images 
WaTMRI DLMRI PBDW GBRWT 

SNR MSSIM RLNE SNR MSSIM RLNE SNR MSSIM RLNE SNR MSSIM RLNE

Fig. 5(e) 13.16 0.8332 0.1444 13.01 0.7572 0.1693 15.85 0.8978 0.1211 16.46 0.9109 0.1122

Fig. 5(f) 12.45 0.8187 0.1485 12.38 0.7500 0.1744 15.59 0.9100 0.1195 16.43 0.9205 0.1079

Fig. 5(g) 12.43 0.8071 0.1426 13.08 0.7694 0.161 16.38 0.9086 0.1094 17.21 0.9195 0.0985

Fig. 5(h) 13.73 0.8509 0.1224 13.93 0.7823 0.1476 17.93 0.9360 0.0932 19.44 0.9507 0.0773

4.5. Effect of reference images 

 

Fig. 14 Reference images with better qualities cause better reconstructions. (a) is the full sampled 

image; (b-c) are reconstructed images using the SIDWT-based reconstructed and the full sampled 

image as references; (b-c) get RLNEs 0.109 and 0.095; (d) is the sampling pattern with undersampling 

rate 35%. 

The GBRWT shows stronger abilities to retrieve the information from reference images. As 

shown in Fig. 14, when a fully sampled image is available, GBRWT can significantly reduce 

the reconstruction error than PBDW can. This fact implies GBRWT can learn more features 
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from a reference image than PBDW. In practice, GBRWT outperforms PBDW when no 

ground truth image can be used as reference images. However, the improvement of GBRWT 

over PBDW is less than that of learning from an optimal reference as shown in Fig. 15(a). 

Reasons may be the reduced resolution of reference image itself as well as the presence of 

artifacts in the SIDWT-based reconstructed images. 

The GBRWT can follow PBDW-based reconstruction to further reduce reconstruction 

errors as shown in Fig. 15(b). The PBDW following GBRWT will improve the reconstruction, 

but its final reconstruction errors remain larger than those of GBRWT following PBDW. 

Therefore, using PBDW to generate the reference image is recommended. However, 

considering the computation time of PBDW, we recommend using SIDWT to reconstruct 

reference images since the improvement of using PBDW to achieve a reference is not 

significant as that of using SIDWT. 

 

Fig. 15 Reconstruction errors when different reference images are used. (a) RLNE curves when the 

ground truth image and SIDWT-based reconstructed image are adopted as the reference image; (b) 

RLNE curves for GBRWT following PBDW or contrary.  

4.6. Filters  

While Haar filter is utilized as a typical setting in GBRWT, other filters are also 

considered. Figure 16 shows that comparable reconstructed images and errors will be 

obtained using different filters. This comparison implies that the proposed method is 

insensitive to selected filters. Therefore, Haar filter with simplicity and high speed is 

suggested. 



 23 / 27 

 

 

Fig. 16 The GBRWT-based reconstructed images with different filters. (a) the full sampled image; (b-d) 

reconstructed images using filters: Haar, sym8 and db4. The RLNEs of (b-d) are 0.0935, 0.0943 and 

0.0944 respectively. 

 

4.7. Computation time  

The GBRWT searches similar patches in a local region first, and expands its search to the 

whole region if no unvisited patches remain in local areas (Ram et al., 2011, 2012, 2013). 

This strategy reduces the computation time significantly in our implementation. The 

simulation performed on a four Intel Cores i7-2600 CPU at 3.4GHz and 16GB of our typical 

settings takes about 100s with twice optimization, which is not included 10 seconds for the 

first SIDWT-based reconstruction. Note that patch reordering induces in-1D filtering loop 

executions which are time consuming in nonparallel processes, but are valuable in finding 

accurate paths and increasing the redundancy.  

5. Conclusion 

In this article, a new image reconstruction method based on a graph-based redundant 

wavelet transform is proposed in CS-MRI. This method explores the graph structure to model 

images and images’ approximate coefficients in each wavelet decomposition level to 

minimize the total difference of all image patches. Then the input signal can be smoothed by 

new orders estimated by solving travelling salesman problem in the graph. Wavelet filtering 

of smoother signals lead to sparser representations of magnetic resonance images, thus 

improve the reconstruction. Comparing with conventional shift-invariant wavelets and several 

state-of-the-art CS-MRI image reconstruction methods, including PBDW, DLMRI and 

WaTMRI, reconstructed images of proposed method are more consistent with fully sampled 
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images in image intensities and details. Further improvements can be obtained by optimizing 

permutation orders trained from the patch-based graph, further smoothing signals. Finally, 

parallel processes are expected to reduce the computation time caused by redundancy in 

future work. 
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