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Accelerated NMR Spectroscopy with Low Rank Reconstruction 
Xiaobo Qu*[a], Maxim Mayzel[b], Jian-Feng Cai[c], Zhong Chen[a], and Vladislav Orekhov*[b] 

Abstract: Accelerated multi-dimensional NMR spectroscopy is a 
prerequisite for studying short-lived molecular systems, monitoring 
chemical reactions in real-time, high-throughput applications, etc. 
Non-uniform sampling is a common approach to reduce the 
measurement time. Here, we introduce a new method for high 
quality spectra reconstruction from non-uniformly sampled data, 
which is based on recent developments in the field of signal 
processing theory and utilizes the so far unexploited general 
property of the NMR signal, its low rank. Using experimental and 
simulated data, we demonstrate that the low rank reconstruction is a 
viable alternative to the current state-of-the-art technique 
compressed sensing. In particular, the low rank approach is good in 
preserving of low intensity broad peaks, and thus increases the 
effective sensitivity in the reconstructed spectra.  

Achieving high spectral resolution and sensitivity while keeping a 
minimal measurement time, is of primary importance in many 
NMR applications such as studies of short-lived molecular 
systems, in-cell NMR experiments[1], characterizing 
intermediates of chemical reactions in real time[2], high 
throughput and metabolomic[3] applications, etc. The duration of 
a multi-dimensional NMR experiment is proportional to the 
number of measured data points and increases rapidly with 
spectral resolution and dimensionality. The Non-Uniform 
Sampling (NUS)[4] approach offers a general solution for a 
dramatic reduction in measurement time.  

The reconstruction of a spectrum from a non-uniformly 
sampled signal is impossible without introducing additional 
constraints or assumptions on the signal in the time or frequency 
domains. Apart from computational issues such as convergence 
and stability in respect to noise and spectral artefacts, success 
of an algorithm in reconstructing a high quality spectrum 
depends largely on the correctness of the used constraints that 
are derived from known NMR signal properties. For example, 
the Compressed Sensing (CS) approach[5] exploit a reasonable 
notion that an NMR spectrum is sparse, i.e. that only a few time-
domain frequencies give rise to true peaks while the rest of the 
spectral space contains only baseline noise. Despite the evident 
success of CS[3, 6], it was recently noted that sparseness of the 
NMR spectrum is a crude approximation and the quality of the 

CS processed spectrum obtained from NUS data can be 
significantly improved by additional signal pre-processing steps 
such as zero filling or virtual echo[7]. In particular, spectra with 
broad lines deviate from the sparseness assumption made in CS 
and line shape distortions and even suppression of signals might 
be observed. Hence, the question remains, can an algorithm, 
based on alternative general signal property assumptions, 
provide NUS spectra reconstructions of even higher quality and 
from fewer acquired data points?  

In this work, we introduce Low Rank (LR) spectrum 
reconstruction that is inspired by recent developments in the 
field of low rank matrix completion with many remarkable 
demonstrations in medical imaging[8], computer vision[9], and 
other applications. It has been proven that a low rank matrix can 
be recovered faithfully from limited number of its elements[10]. 
Unlike CS, which seeks for a spectrum with the fewest non-zero 
spectral intensities, the LR approach reconstructs a spectrum 
with the least number of spectral peaks. The latter assumes that 
the time-domain NMR signal can be approximated by a sum of a 
few decaying sine waves (or exponentials). This assumption has 
been applied to signal processing in NMR for decades, e.g. in 
linear prediction[11], filter-diagonalization[12], recursive multi-
dimensional decomposition[13] and other algorithms. Yet, to the 
best of our knowledge, this signal property was never used as a 
constraint in non-parametric algorithms for the reconstruction of 
NUS spectra.  

Let vector x  be the complete NMR signal that is called the 
free induction decay (FID) and the operator R  converts it into a 
Hankel matrix[11] =X Rx . The low rank of the FID means that 
the rank of its Hankel matrix X is low, i.e. the number of non-
zero singular values of X is small. As it is illustrated in 
Supplementary Figure S1, the FID rank is equal to the number 
of exponentials in x [11]. Notably, the rank is independent of the 
line width of the peaks in the spectrum. When the FID is non-
uniformly sampled, the matrix X  contains missing entries. Thus, 
the task of the spectrum reconstruction from the NUS data is 
equivalent to recovering the matrix X  and can be formulated as 
a low rank matrix completion problem[10]: 

 (1) 

where y  is the acquired NUS FID data, U  is an operator of the 

NUS schedule, Rx
∗

 is the nuclear norm [14] defined as a sum 

of matrix singular values, and λ  trades the low rank constraint 
with the consistency between the reconstructed signal x  and 
the experimental data y. It is worth noting that the LR constraint 
in Eq. (1) is imposed on the time-domain signal. Eq. (1) can be 
efficiently solved by the alternating direction minimization 
method[15] (see Supporting Information). 
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Figure 1. Reconstructions of the synthetic spectrum containing five peaks with 
different line widths. (a) Fully sampled spectrum, (b) and (c) are the CS and 
LR reconstructions, respectively, obtained from 20% NUS. Correlation 
analysis of spectral intensities in small regions around the peaks (3 times the 
line width) between the full reference spectrum and the LR (d) and CS (e) 
reconstructions,. The black, dashed grey, and solid grey lines in (d) and (e) 
connect results of the reconstructions using 20%, 15% and 10% NUS, 
respectively. The error bars are the standard deviations of the correlations 
over 100 NUS resampling trials.  

Figure 1 shows a comparison between a simulated fully 
sampled reference spectrum and its NUS reconstructions 
obtained using the CS and LR algorithms. The spectrum 
contains five peaks with the same integrals but different line 
widths. Both NUS processing methods successfully recover the 
narrowest peak to the right in Fig. 1a-c. The broadest peak to 
the left is faithfully recovered by the LR approach but is seriously 
distorted by the CS. For the three middle peaks with moderate 
line width, the CS produces clearly visible line shape distortions 
as shrinkage of the peaks. Correlation analysis of the spectral 
intensities, shown in Fig. 1d,e indicates that, for the NUS level in 
the range 10% - 20%, the two broadest peaks are recovered 
systematically better using the LR than by the CS. For the three 
remaining narrower peaks, the LR and CS provide comparable 
results. These observations imply that the LR, while performing 
similarly for the narrow peaks, outperforms CS when the peaks 
are relatively broad. 

This effect can be explained by using the basic CS theorem, 
binding the number of properly reconstructed spectral points, 
which is essentially a measure of spectrum sparseness, with the 
sampling level[5b]. For broad peaks, more points contribute to 
each signal in the spectrum and thus more data points are 
needed to fulfil the condition for a successful CS reconstruction. 
On the other hand, the rank of the FID signal is independent on 
the line width, and thus the LR produces correct reconstruction 
of line shapes for both sharp and broad peaks.  
 

 Figure 2. 2D 1H-15N HSQC spectrum of the cytosolic domain of CD79b. (a) 
the LR reconstruction from 35% NUS data, (b) the fully sampled reference 
spectrum. The inset shows correlation of the peak intensities between the 
reference and the LR spectra; the correlation coefficient equals to 0.99. (c)-(f) 
representative reconstructions for the 11G, 37T, 38G, and 45G amide group 
peaks, respectively; dashed, grey, and black lines show 1D 15N-traces 
through the peaks in the full reference, the LR, and CS spectra, respectively.  

 
Figure 2 shows a NUS 2D 1H-15N HSQC spectrum of the 

intrinsically disordered cytosolic domain of human CD79b 
protein from the B-cell receptor. Similarity between the LR 
reconstruction in Fig. 2a and the fully sampled reference 
spectrum in Fig. 2b illustrates the high quality of the LR 
reconstruction obtained from only 35% of the traditionally 
acquired spectrum. This qualitative observation corroborates 
with the faithful reproduction of the peak intensities shown in the 
inset of Fig. 2b. Similar results are obtained for a 2D NOESY 
spectrum of ubiquitin (see Supporting Information). The quality 
of the CS reconstruction obtained from the same NUS HSQC 
data (not shown) is generally as good, with the majority of the 
peaks reproduced equally well by the CS and LR. This is 
illustrated for the amide group of Gly11 in Fig. 2c. Nevertheless, 
several low intensity peaks are notably compromised in the CS 
spectrum as shown in Fig. 2d-f. While peaks for Thr37 and 
Gly45 show clear line shape shrinkage, the peak of Gly38 is 
completely lost. The opposite situation, when a true peak is 
present in the CS but is missing in the LR reconstruction, never 
occurred in our spectra. It should be also noted that the virtual-
echo pre-processing used for all of the CS reconstructions in this 
work improves quality of the spectra but requires prior 
knowledge about the signal phase[7]. In general, when the phase 
is unknown, the virtual-echo cannot be used and the comparison 
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between the CS and LR would be even more in favour of the LR 
method. The experimental results are fully consistent with the 
simulations shown in Fig. 1 and lead us to the conclusion that 
the LR produces at least as good spectral reconstructions as the 
CS and often outperforms it for broadest and weakest peaks. 
Effective sensitivity of a spectrum reconstruction method from 
NUS data is defined as a possibility to detect weak peaks and 
discriminate them from eventual false signals[16]. Thus, the 
observed good reconstructions of the low intensity peaks by the 
LR indicate high sensitivity of the new method. 

We introduce the LR reconstruction as a new general 
technique for obtaining high quality spectra from a small number 
of NUS data points. The method allows a significant reduction in 
measurement time, which is particularly useful for high 
throughput applications, studies of short lived systems, time 
resolved experiments, and many other practical cases. We 
demonstrate the first NUS reconstruction algorithm using the low 
rank property of the NMR time-domain signal. The LR and CS 
approaches are based on distinctly different assumptions and in 
future work we envisage design of an even more powerful NUS 
processing algorithm that combines the low rank and 
sparseness signal properties.  
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High quality NMR spectra are reconstructed from a small number of non-uniformly 
sampled data points. Significant reduction in measurement time is obtained using 
the so far unexploited general property of NMR signal – its low rank.  
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Supplementary Information 
 

Theory 

Convert FID data into Hankel Matrix 
Let us start from 1D FID data and denote the sampled FID at the time point n tΔ  as x(n) where tΔ  is the 

Nyquist sampling interval. Then the FID vector x is rearranged as 

 X =

x 1( ) x 2( ) ! x Q −1( ) x Q( )
x 2( ) x 3( ) ! x Q( ) x Q+1( )
! ! " ! !

x N −Q( ) x N −Q+1( ) ! x N − 2( ) x N −1( )
x N −Q+1( ) x N −Q+ 2( ) ! x N −1( ) x N( )

"

#

$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'

,          (1) 

where ( 1)N Q Q− + ×∈X £ , is a Hankel matrix with dimension ( )1N Q Q− + × .  In the current study, Q  is chosen as 

0.1N assuming the maximum rank of X  is less than 0.1N. In an operator form: 

 X =Rx ,                              (2) 

where R  is an operator that rearranges vector x to the Hankel matrix. 

For a 2D experiment, the FID data has one direct and one indirect dimension, only the indirect dimension is 

undersampled to achieve fast data acquisition. After the Fourier transform along the directly detected dimension, 

each of the 1D FID data in the indirect dimension is converted into a Hankel matrix and processed separately. 

The missing data points are recovered using the low rank method as described bellow.  

Alternating Direction Minimization method (ADMM) 
The low rank minimization problem for the NMR signal reconstruction is formulated as 

 2

2
min

2
λ

∗
+ −

x
Rx y Ux ,   (3) 

where 1N×∈x £  is the FID to be estimated, 1M×∈y £  are the acquired data points, ∗
Rx  is a nuclear norm of 

Rx , defined as the sum of the singular values, M N×∈U °  is an undersampling operator, and λ  is a parameter 
to tradeoff the nuclear norm and data consistency. 
Eq.(3) is equivalent to 

 2

2,
min . .

2
s tλ

∗
+ − =

x Z
Z y Ux Rx Z .   (4) 

The Lagrangian form of Eq.(4) is 

 2

2,
minmax ,

2
λ

∗
+ − + −

x Z D
Z y Ux D Rx Z    (5) 

where D  is the Lagrangian multiplier, and ,⋅ ⋅  is the inner product in the Hilbert space of matrices defined 

by ( ) ( ) ( )( ), : , : trace ∗=ℜ =ℜA B A B A B  and ℜ  denotes the real part. The augmented Lagrangian'of'Eq.(3)' is'
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 2 2

2,
minmax ,

2 2 F

λ β
∗
+ − + − + −

x Z D
Z y Ux D Rx Z Rx Z ,  (6) 

where F
⋅  means the Forbenius norm and 0β >  is a parameter. By interchanging min-max, the dual problem 

is obtained as follows 

 2 2

2,
maxmin ,

2 2 F

λ β
∗
+ − + − + −

x ZD
Z y Ux D Rx Z Rx Z .         (7) 

Then, Eq. (7) is solved by a gradient ascent algorithm with aspect to D . In ADMM[1], the gradient is 
approximated by one step alternating direction minimization, and this leads to 

 
x← argmin

x

λ
2
y−Ux

2

2
+ D,Rx −Z +

β
2
Rx −Z

F

2#
$
%

&
'
(

Z← argmin
Z

Z
∗
+ D,Rx −Z +

β
2
Rx −Z

F

2#
$
%

&
'
(

D←D+τ Rx −Z( )

#

$

*
*
**

%

*
*
*
*

 , (8) 

where τ  is the step size. The first line in Eq. (8) is equivalent to 

 
2

2

2
min

2 2 F

λ β
β

− + − +
x

D
y Ux Rx Z , (9) 

whose solution is 

 ( ) 1T T T Tλ β λ β
β

− $ %& '
= + + −( )* +

, -. /

D
x U U R R U y R Z  (10) 

and T  stands for transpose. 
The second line in Eq. (8) is equivalent to 

 
2

*
min

2
 

F

β
β

+ − +
Z

D
Z Rx Z .  (11) 

All matrices involved in Eq. (11) are complex-valued. One can extend Theorem 2.1 in [2] to complex-valued 
matrices without too much difficulty and obtain the solution of Eq. (11) as follows 

 1S
β β
" #

← +% &
' (

D
Z Rx ,   (12) 

where S  is a soft singular value thresholding operator on a matrix [2], leading to low rank enforcement on a 
matrix. For example, for a matrix X  with singular value decomposition =X PΣQ , where 1, ,diag({ } )j j Jσ ==Σ L  

is a diagonal matrix, the soft singular value thresholding operator ( )Sη X  means 1, ,diag({( - ) } )j j Jσ η + =# $= % &Z P QL  

where ( )t +  denotes the positive part of t , namely, ( ) max (0, )t t+ =  [2].  
 
The third line  
 ( )τ← + −D D Rx Z    (13) 
in Eq. (8) is a simple update on the dual variable D . 
Altogether, we get the ADMM solver as shown in Table 1. If the step size 0 1.618τ β< <  , this algorithm in Eq. 
(8), solving Eq.(3), converges. 
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Table S1. Algorithm for ADMM 

Initialization: Input y , R , U , λ , 1β = , step size τ β=  and tolerance of solution in iterations 
810η −=  . Initialize the dual variable =D 1  and initial solutions T=x U y , last =x x , 310Δ =x  .  

Main: 
While ηΔ ≥x  

1) Given Z , D , update x  by solving Eq.(10); 
2) Fix x  and D , update Z  by using Eq.(12); 
3) Update D  according to Eq. (13);  

4) Compute last

last

−
Δ =

x x
x

x
. 

Output: x  and the reconstructed spectrum is obtained by performing Fourier transform on x . 
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Illustration of the Low Rank FID property  

on the simulated data 

The synthetic time domain signal was simulated as a sum of decaying exponentials: 

 ym = Aje
iφ j( )e

−
mΔt
τ j eimΔtω j

j=1

J

∑
,  (14) 

where J=5 is the number of sinusoids, Aj, ∅!, τj and ωj are the amplitude, phase, decay time and frequency, 
respectively, of the jth exponential[3]. 

  

Figure S1. Dependence of the spectrum rank on peak line width. (a) Three simulated spectra with peaks of 
different line width, (b) singular values of the corresponding FIDs rearranged into the Hankel matrix. 

  
Figure S1a shows three simulated spectra composed of five Lorentizian peaks. The signals ware simulated (Eq. 

14) with unit amplitudes, zero phases, and the decay parameters τ are listed in Table S2. Figure S1b presents 
singular values of the Hankel matrix of the time domain signal. The FID rank, which is defined as the number of 
non-zero singular values [3-4], is 5 for all three spectra. This implies that the rank of the spectrum equals to the 
number of peaks, which is typically small, and does not depend on the line widths.  

 

Table S2. Decay times for the synthetic data in Figure S1. 

Peak # 1 2 3 4 5 

τ (s) black spectrum  0.005 0.010 0.015 0.020 0.030 

red spectrum 0.010 0.020 0.030 0.040 0.060 

blue spectrum 0.020 0.040 0.060 0.080 0.120 
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Low Rank reconstruction of 2D NOESY spectrum of ubiquitin 

Figure S2. 2D NOESY spectrum of 1 mM ubiquitin, measured at 25o C, 500MHz Varian UNITY Inova 
equipped with a room temperature probe. A. Region of the fully samples reference spectrum acquired with 300 
complex points in the indirect spectral dimension. B. The LR reconstruction of the same region from 150 
non-uniformly sampled complex points. The first contour level is set 1.4 times higher than in the reference 
spectrum in order to compensate for the expected increase of the noise level due to the reduced measurement 
time of the NUS experiment. C. 1D slices from the reference (green) and Low Rank (blue) spectra are taken at 
the position indicated by the red dashed line in panel B. E-F. Correlations of the cross-peak intensities in the 
Low Rank (abscissa) and reference (ordinate) spectra, correlation coefficient equals to 1.0, 0.999 and 0.983 
respectively. Values of the peak intensities are given in units of noise in the reference spectrum scaled up by 1.4 
to compensate for the reduced time of the NUS experiment. 

Experimental Section 

300 µM 15N-13C labeled sample of cytosolic CD79b in 20 mM sodium phosphate buffer, pH 6.7 was prepared 
as described previously [5]. Fully sampled 2D 1H-15N HSQC with 256 complex points in the 15N dimension 
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(143.5 ms acquisition time) was acquired at 55 °C on 800 MHz Bruker AVANCE III HD spectrometer equipped 
with 3 mm CPTCI cryoprobe. The directly detected dimension of the amide region of the full reference 2D 
spectrum (8.75-7.85 1H ppm) was processed using NMRPipe software[6] and imported in MATLAB for 
consecutive reconstruction by the LR and CS VE-IRLS[7] methods. The 35% sparse non-uniform Poisson-gap 
sampling table was produced according to reference[8].  

Calculations 

The LR reconstruction on the synthetic data and experimental spectra were performed using the algorithm 
described above with the Lagrangian multiplier λ=103. The results of the calculations are not sensitive to the 
setting of λ. The LR calculations we performed in Matlab (MathWorks Inc) on a laptop computer with 2 Cores 
2.6 GHz CPU and 12 GB RAM. The computational time for reconstruction of the 2D HSQC and NOESY 
spectra were about one minute. All the CS reconstructions were performed using the iterative re-weighted least 
squares (IRLS) algorithm and the virtual-echo signal pre-processing[7]. In all cases, the NUS was performed 
according to a Poisson distribution[8].  
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