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Abstract  

 

Due to the limited depth of field in a camera, some imaging objects will be blurred if 

they are located far from the focus plane and the other objects on the plane will be clear. 

Multi-focus image fusion synthesizes a sharp image from multiple partially focused images. 

However, traditional fused images usually suffer from blurring effects and pixel distortions. 

In this paper, we explore two unique characteristics of multi-focus images: 1) The 

self-similarity of a single image and the shared similarity among multiple source images; 2) 

The distances from object to focal plane. The former characteristic is used to identify image 

structure-driven regions while the latter refine the image clarity by automatically estimating 

depth information of blurred images. Experimental results demonstrate that the proposed 

method outperforms the state-of-the-art fusion methods on image quality and objective fusion 

criteria. 
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1. Introduction 

Focusing is important for acquiring a clear image in photography. However, images will 

be blurred if an object lies far from the focal plane. Therefore, it will be hard to acquire a 

clear image for a camera with limited depth length. Multi-focus image fusion technology can 

provide a clearer and more reliable image by combining the information from multiple 

images focusing on different objects of the same or similar scene [1-3]. It has been applied in 

non-diffracting imaging system [4], mobile microscope processing software [5] and 

fluorescence intraoperative surgery [6] in biophotonics. 

Existing fusion methods can be roughly divided into two types, which perform the 

fusion in the spatial domain [7-11] or multi-scale decomposition (MSD) domains [1, 12], 

using sparse transforms, e.g. wavelets [1, 13, 14], bandelets [15], contourlets [16, 17], 

shearlets [18], surfacelets [19], trained dictionaries [3, 20, 21]. Although many MSD methods 

produce nice images, they lead to pixel distortion (Figs. 1(c) and (e)) due to nonlinear 

operations in the MSD domain. Making use of the coefficients statics in MSD domain helps 

to suppress this limitation but needs to train parameters in statics models comprehensively 

[22]. On the contrary, much less distortions are introduced if linear fusion rules in the spatial 

domain, e.g. the maximum rule, directly choose the pixel values in a well-focused region 

(Figs. 1(d) and (f)). But the shape of a region will seriously affect fused images. For example, 

the commonly used isotropic square regions in the spatial domain will easily lead to blocky 

artifacts in blurred areas around the edge (Figs. 1(d) and (f)). How to choose image pixels in 

an adaptive region with high clarity remains open. 

In this paper, a new multi-focus image fusion method in the spatial domain is proposed. 

A data-driven scheme, based on the shared similarity of source images, is proposed to 

generate adaptive regions. Moreover, the distance from an object to the focal plane is 

automatically estimated. This prior information can hopefully improve the fusion 

performance since the distance will seriously affect clarity of images. Our contributions are 

summarized as follows: 

1) Adaptive regions based on shared similarity of source images are generated to measure the 
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clarity, thus will potentially avoid the blurring on one object and make more reliable 

decisions for fusion.  

2) A weighting fusion rule based on adaptive regions voting is proposed to further suppress 

the blurring artifacts. 

3) The distances between multiple objects and the focal plane are incorporated in adaptive 

regions to measure the clarity. 

 

Fig. 1.  Artifacts produced by the wavelet and the traditional spatial method. (a) and (b) are 

source images, (c) and (d) are cropped parts of fused images using wavelet and typical spatial 

method with isotropic regions, (e) and (f) are fusion errors compared with the sharp image 

regions in (b). Note: Some-of-Modified-Laplacian (SML) is applied in the spatial method. 

 

2. Method 

The outline of the proposed method is illustrated in Fig. 2. First, adaptive regions are 

generated using image similarity information. Next, the depth information is estimated, and 

combined with the image gradient to measure the clarity in adaptive regions. Finally, a pixel 

is fused based on the weightings from source images. 
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Fig.2. Flowchart of the proposed method. 

 

2.1. Shared similarity regions 

The adaptive region is generated using the shared similarity of source images. Images 

are first divided into multiple overlapped square patches, and similar patches are searched [23, 

24].  

Here, a shared self-similarity of source images is defined as follows to generate an 

adaptive region of pixels for fusion. Given a reference patch m m
rP ×∈  and a region 

( ) n nR r ×∈   centered at pixel r , the similarity of any candidate patch m m
qP ×∈  to the 

rP  is defined as 

q q r F
P Pη = − ,                           (1) 

where 
2

1 1

=
I J

ijF
i j

A a
= =
  denotes the Frobenius norm of matrix A . By sorting the qη  by 

the descending order for all the patches in this region, the most k  similar patches to rP  are 

found and the collection of this patches are expressed as ( ) { }
1 2
, , ,

kR q q qL r P P P=  . Similar 

patches shared by both AR
L  and BR

L  are 

( ) ( ) ( )A B

S
R R R

L r L r L r=                                   (2) 
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where ( )S
RL r  is one of adaptive regions for fusion, ( )AR r  and ( )BR r  denote the same 

region of source images Af and Bf , respectively. The locations and the number of similar 

patches of each adaptive region vary with the shared similarity of source images. For 

example, the adaptive region is composed of 4 similar patches as shown in Fig. 3. 

 

 

Fig. 3.  An adaptive region of shared similar patches 
 

How to make use of these adaptive regions in image fusion? Traditionally, a pixel of the fused 

image is chosen from a source image with higher clarity, which is called the maximum rule [1, 7], as 

follows:  

( ) ( ) ( ) ( )
( )

     

   otherwise

A A B

F

B

f r if C r C r
f r

f r

 >= 


                        (3) 

where C  denotes the clarity metric and Ff  is the fused image. In order to overcome the blocky 

artifacts in fusion, instead of selecting the pixel with a larger value, ( )C r  is usually computed as a 

sum of pixel-wise charity measure, e.g. gradients like Some-of-Modified-Laplacian (SML) in a fixed 

size of region centered at r [7, 17]. SML at ( )0 0,r x y=  is defined as 

( )
0 0

0 0

2
0 0 0 0, ( , )

y x N y y N

ML
x x N x y N

SML x y f x y
= + = +

= − = −

= ∇                     (4) 

Af
AR

Bf
BR
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where 2
0 0( , )ML f x y∇  is the Modified Laplacian (ML), whose expression is  

2
0 0 0 0 0 0 0 0

0 0 0 0 0 0

( , ) 2 ( , ) ( 1, ) ( 1, )

                    2 ( , ) ( , 1) ( , 1)

ML f x y f x y f x y f x y

f x y f x y f x y

∇ = − − − +

+ − − − +
.           (5) 

In our approach, clarity is measured in each adaptive region. If the clarity in an adaptive region 

( )s
RL r  of Af  is larger than that of Bf , one vote will be assigned to all the pixels ( )s

Rj L r∈  in this 

adaptive region of Af , meaning 

( ) ( ) ( )1 ,A A s
Rv j v j  j L r= + ∈ .                       (6) 

where ( )Av j  denotes the counter at the spatial location j  . The initial values of ( )Av j  and 

( )Bv j  are 0 and voting stops until all the adaptive regions are compared. Finally, one can have 

counter maps Av  and Bv  that are in the same size as source images. In the following, ( )Av r  and 

( )Bv r  are used to denote the final vote for pixels at location r . 

Figs. 4(e) and 4(f) show the improvement using the proposed adaptive region over the fixed size 

region in traditional methods. Obviously, more accurate pixels are selected from the clear images 

using the new approach. This is mainly because more homogeneous pixels are collected to sum 

pixel-wise charity measure within the proposed data-driven adaptive region.  
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Fig. 4. Illustration of the proposed method. (a) and (b) are multi-focus source images, (c) and (d) are 

estimated distances to focal plane of (a) and (b) where darker gray value implies closer distance, (e) 

and (f) are fused images using fixed and the proposed adaptive regions with a maximum rule, (g) and 

(h) are the fused image using adaptive regions with the weighting rule but without and with depth 

information, (i)-(l) are the weight for source image (b) used in the fusion of (e)-(h), respectively. 

 

However, one may observe some blurred pixels around edges in Figs. 4(f). One possible solution 

is to use weightings to compose the pixel according to 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
A B

F A B
A B A B

v r v r
f r f r f r

v r v r v r v r
= +

+ +
.                 (7) 

Since ( )Av r  or ( )Bv r  are usually nonzero, the wrongly selected pixels will be smoothened. For 

example, a binary decision is made by the traditional maximum rule as shown in Fig. 4(j), where a 

white (or black) pixel indicates choosing a pixel from Fig. 4(a) (or Fig. 4(b)). But the proposed rule 
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generates a weighting between 0 and 1 as shown in Fig. 4(k) to extract gray values from both Figs. 

4(a) and (b). Therefore, this weighting fusion rule can inhibit the defect on image edges comparing 

Figs. 4(f) and 4(g), although some pixels are still wrongly selected around edges in Fig. 4(g). This 

problem will be further resolved using the following estimated depth information. 

 

2.2. Incorporate the distance from the object to the focal plane 

Here explains how to incorporate the depth information to remove the blurring around edges.  

Let ( )d r  be the distance between the focal plane and the object whose location corresponds to 

the image pixel r . When an object is placed at the focal plane Fd , all the rays from a point of the 

object will converge to a single sensor point and the image will appear sharp. Rays from a point of 

another object at ( )d r  will reach multiple sensor points and result in a blurred image. Let ( )s r  

denote the diameter of the circle of confusion, and it can be written as 

( ) ( )
( ) ( )

2
0

0

F

F

d r d F
s r

d r N d F

−
=

−
                               (8) 

where 0F  and N  are the focal length and the stop number of the camera, respectively.  

 

Fig. 5. Focus and defocus for thin lens model. 

In this paper, a linear response camera ( ) ( )d r s r∝  is assumed to automatically estimate the 

depth using a defocus map estimation method proposed in [25]. The whole estimation process is 

shown in Fig. 6 and a brief review will be given below. 
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Fig. 6. The process of depth estimation. 

 

First, the ( )d r  at edge locations r L∈  is calculated by 

 ( )
( ) 2

1

1
d r

R r
∝

−  

                       (9) 

where ( )R r  is a ratio between the gradients of input out-of-focus image and its re-blurred 

image [25]. Then, the depth estimation is propagated the from edge locations to the entire image, and 

a full depth map is obtained finally [25]. In this paper, the maximum ( )d r  is normalized to be 1 for 

all images. 

If the distance from an object to the focal plane is close, the pixel belongs to well-focused region 

as shown in Figs. 4(c) and (d). Thus, the depth information can be used as a refinement for the clarity 

metric on images 

 ( ) ( ) ( ) 2
C r M r d r

−
= ×                                 (10) 

where ( )M r  is the SML, and ( )d r  is the distance between the object at pixel r and the focal 

plane. By incorporating this depth information into fusion, more accurate weightings are performed 

on source images as shown in Fig. 4(l). Therefore, the blurring artifacts are significantly removed as 

shown in Fig. 4(h).  

 

3. Results 

In simulations, the proposed method is compared with the typical image fusion methods using 

the pulse coupled neural networks (PCNN) [16], sharpness statistics (SS) [26], and the 

state-of-the-arts guided filtering (GF) [27]. The code of the three methods can be found at 
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http://www.quxiaobo.org, http://www.mathworks.com/matlabcentral/fileexchange/downloads/16579  

and http://xudongkang.weebly.com. Default parameters in the shared source codes are used. For the 

proposed method, the search region size is 16×16 and the number of similar patches is 16 for all 

images.  

As shown in Fig. 7, PCNN leads to obvious blurred edges. SS generates very sharp edge but 

introduces artifacts around boundaries. GF produces nice results but still encounters blurring around 

boundaries. The proposed approach achieves minimal artifacts around the object boundaries and 

produces the sharpest images.  

 

 

Fig. 7. Fused images using different methods. (a)-(d) are source images Disk and Lab, (e)-(h), (i)-(l) 

and (m)-(p) are fused images using pulsed coupled neural networks, sharpness statics, guided filter 

and the proposed method, respectively. 
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Two fusion criteria, mutual information (MI) [13] and QAB/F [14] are used to evaluate the fusion 

performance [16, 26, 27]. MI measures the information transferred from source images to the fused 

image, and QAB/F indicates how much edge information is preserved in the fused image. Evaluation 

criteria listed in Table 1 demonstrates that the proposed method provides the most consistent fused 

images to the source images and preserves the image edges best.  

 

Table 1. Objective fusion criteria for different methods 

Images
PCNN SS GF Proposed 

MI QAB/F MI QAB/F MI QAB/F MI QAB/F 

Disk 6.15 0.656 7.55 0.715 7.06 0.724 7.81 0.733 
Lab 7.59 0.700 8.04 0.740 7.91 0.751 8.38 0.757 

Clock 7.47 0.681 8.03 0.693 7.89 0.716 8.57 0.724 

 

4. Discussions 

4.1 Tests on synthetic images 

Three popular grayscale images are adopted as ground truth images. Different regions of 

the ground truth images are then blurred to synthetize the testing images (Fig. 8). The 

measured peak signal-to-noise-ratio (PSNR), shown in Table 2, implies that the proposed 

method consistently outperforms the compared methods. 

 

 

Fig. 8. Synthetic images for fusion. (a) and (b), (c) and (d), (e) and (f) are generated on the 

commonly used images Barbara, Boat, and Mandrill, respectively. 
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Table 2. PSNR performance on the synthetic images (unit: dB). 

Images PCNN SS GF Proposed

Barbara 33.4 42.1 46.8 50.6 

Boat 32.7 36.6 46.6 53.0 

Mandrill 33.3 43.9 46.7 51.9 

 

4.2 Parameters of the proposed method 

Parameters of the proposed method include the region size, the number of similar patches 

and the patch size. We analyze the effect of these parameters on mutual information (MI) in 

Fig. 9. Another evaluation criterion, QAB/F, is not shown here because of its consistent 

performance to that of MI. Default values of the search region size, the number of similar 

patches and the patch size are 16, 16, and 8, respectively. When one parameter is discussed, 

the other two parameters are fixed with default values.  

The MI performance is stable for different region sizes and numbers of similar patches. 

However, the computational time goes up as the two parameters increase. Therefore, region 

size is set as 16 and the number of similar patches is set as 16. The patch size will affect the 

MI performance a little more. The MI performance always increases as the patch size 

becomes larger. However, the computational time increases significantly when the patch size 

is increased to 14. To maintain a stable computational time, the patch size is suggested to be 

half of the region size. 

Default parameters of the depth estimation are used and one can download the code at 

http://sjzhuo.net/defocusEstimation/index.html. 
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Fig. 9. The effect of the parameters in the proposed method. (a)-(c) are curves for the region 

size, the number of similar patches and the patch size. Experiments are conducted on fusing 

Disk images and computational time of depth estimation is not included. 

 

4.3 Computational time 

The computational time for all methods is reported in Table 3. PCNN is the slowest and 

GF is the fastest. The proposed method is faster than SS. In the simulation, 80% computation 

time of the proposed method comes from estimating the depth information. Besides, the 

computation spent on patch-based processing of the proposed method could be accelerated 

with parallel computing [28]. 

 

Table 3. Computational time for different methods (unit: second) 

Images PCNN SS GF Proposed 

Disk (640×480) 489.63 153.34 0.63 66.90 

Lab (640×480) 495.13 163.75 0.66 70.53 

Clock (512×512) 419.35 117.00 0.53 59.13 

Note: Experiments run on a laptop computer with 2 Cores 2.6 GHz CPU and 12 GB RAM. 

 

5. Conclusion 

In this paper, the image self-similarity and the distance from the object to the focal plane are 
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explored for multi-focus image fusion in the spatial domain. The former leads to a data-driven region 

in arbitrary shapes, while the latter significantly remove blurring artifacts around object boundaries. 

Experiments demonstrate that the proposed approach outperforms the state-of-the-art fusion methods 

on both the image quality and objective fusion criteria. In the future, a faster depth estimation method 

and a parallel computing of the proposed method are expected to speed up the fusion process. 
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