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Abstract 

Compressed sensing MRI (CS-MRI) has shown great potential in reducing data acquisition time in 

MRI. Sparsity or compressibility plays an important role to reduce the image reconstruction error. 

Conventional CS-MRI typically uses a pre-defined sparsifying transform such as wavelet or finite 

difference, which sometimes does not lead to a sufficient sparse representation for the image to be 

reconstructed. In this paper, we design a patch-based nonlocal operator (PANO) to sparsify magnetic 

resonance images by making use of the similarity of image patches. The definition of PANO results in 

sparse representation for similar patches and allows us to establish a general formulation to trade the 

sparsity of these patches with the data consistency. It also provides feasibility to incorporate prior 

information learnt from undersampled data or another contrast image, which leads to optimized sparse 

representation of images to be reconstructed. Simulation results on in vivo data demonstrate that the 

proposed method achieves lower reconstruction error and higher visual quality than conventional 

CS-MRI methods. 
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Highlights 

 

 A patch-based nonlocal operator (PANO) to model the sparse representation of 
similar image patches is proposed. 
 

 PANO provides feasibility to incorporate prior information learnt from 
undersampled data or another contrast image. 
 

 PANO-based undersampled magnetic resonance image reconstruction method is 
proposed. 
 

 Simulations are performed on in vivo data and PANO is compared with typical 
compressed sensing MRI methods. 

PANO achieves lower reconstruction error and higher visual quality than the compared 
methods.
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1. Introduction 

Magnetic resonance imaging (MRI) is widely used in the clinical diagnosis but limited by its 

data acquisition speed. Reducing the number of measurements required by Nyquist sampling 

theorem is one way to accelerate the data acquisition at the cost of introducing aliasing artifacts 

in the reconstructed images. As a promising method, compressed sensing (Candes et al., 2006; 

Donoho, 2006) has been introduced for magnetic resonance (MR) image reconstruction [3], 

called compressed sensing MRI (CS-MRI), from limited data by regularizing the image with 

( )0 1p p≤ ≤  norm assuming MR images are sparse/highly compressible in a certain transform 

domain, e.g. wavelet (Block et al., 2007; Haldar et al., 2011; Huang et al., 2012; Huang et al., 

2011; Lustig et al., 2007; Majumdar and Ward, 2011), contourlet (Gho et al., 2010; Qu et al., 

2010b), finite difference domains (Bilgic and Adalsteinsson, 2012; Bilgic et al., 2011; Block et 

al., 2007; Haldar et al., 2011; Huang et al., 2012; Huang et al., 2011; Lustig et al., 2007; Trzasko 

and Manduca, 2009). For the cardiac imaging, the temporal sparsity is represented with Fourier 

transform (Gamper et al., 2008; Jung et al., 2009; Otazo et al., 2010) and combined with 

low-rank strcture (Lingala et al., 2011; Zhao et al., 2012). Some of these transforms have been 

combined to further improve the reconstruction (Huang et al., 2011; Lustig et al., 2007; Qu et al., 

2010a). Dictionary trained from the intermediate reconstruction or fully sampled reference 

images have also been introduced for MRI reconstruction (Chen et al., 2010; Qu et al., 2012; 

Ravishankar and Bresler, 2011)(Ning et al. 2013). The trained dictionary is expected to provide 

sparser representation of MR images than the general sparsifying transforms thus improve the 

reconstruction. Incorporating prior information by sorting the pixels to enhance the sparsity was 

evidenced to improve the reconstruction of image details (Adluru and DiBella, 2008; Wu et al., 

2011). 

Recently, the nonlocal processing (Buades et al., 2005; Dabov et al., 2007) has been 

introduced for MRI reconstruction to make use of the similarity of image patches (Adluru et al., 

2010; Fang et al., 2010; Liang et al., 2011; Wong et al., 2010). These methods make use of the 

pattern redundancy, which is the root of self-similarity property of the images, to provide sparse 

representation. In (Adluru et al., 2010; Fang et al., 2010; Liang et al., 2011), the difference 

between neighboring patches is utilized to provide the weights to penalize the difference between 

pixels from a large neighborhood. Results in (Adluru et al., 2010; Fang et al., 2010; Huang and 

Yang , 2012; Liang et al., 2011; Wong et al., 2013) have shown that image details are better 

preserved compared with the conventional CS reconstruction. Rather than directly penalizing the 

difference of pixels, the sparsity originated from the similarity of image patches was exploited in 

block-matching and 3D filtering (BM3D) for image denoising (Dabov et al., 2007), and is 

introduced to reconstruct images from undersampled Fourier measurements in (Akçakaya et al., 
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2011; Egiazarian et al., 2007). It has been shown that edges are better preserved for these 

methods. Besides the image reconstruction, making use of the pattern redundancy also shows 

great advantages in denoising (Bao et al., 2013; Manjón et al., 2008; Manjón et al., 2012) and 

super-resolution (Manjón et al., 2012).  

In this paper, making use of similarity in images is taken one step further. We first establish a 

general patch-based nonlocal operator (PANO) to provide sparse representation of similar 

patches. The linearity of PANO allows us to establish a general reconstruction formulation and 

tradeoff between the sparsity of similar patches and the data consistency. This formulation also 

provides the flexibility to incorporate other knowledge into the reconstruction by adding proper 

constraints. Since the k-space data is undersampled, no ground truth image is available to learn 

the similarity. We propose to learn the similarity from a guide image estimated from the 

undersampled measurements. Simulation results imply that learning the similarity is not sensitive 

to the initial guide image. Unlike learning the similarities many times in the iterations in 

(Akçakaya et al., 2011; Egiazarian et al., 2007), repeating this process twice is sufficiently 

enough in the proposed method. This can save computation in searching similar patches. 

The remainder of this paper is organized as follows: The conventional CS-MRI reconstruction 

is reviewed in Section 2. The definition of PANO, the proposed reconstruction formulation and 

the numerical algorithm, are presented in Section 3. Reconstruction results using the proposed 

method and the comparison with conventional CS-MRI methods are analyzed in Section 4. The 

discussions are presented in Section 5. Finally, the conclusions are given in Section 6. 

 

2. Methodology 

2.1. Conventional CS-MRI 

Consider the data acquisition model 

 = +Uy F x ε ,                           (1) 

where N∈x  is the discretized image to be reconstructed, M∈y   is the acquired k-space data, 

M N×∈UF   ( M N< ) is the undersampled Fourier transform operator which directly relies on 

the sampling scheme (Lustig et al., 2007), and M∈ε   is the noise vector, a typical CS-MRI 

reconstruction attempts to solve the following problem (Lustig et al., 2007): 

 
2

21
ˆ arg min

2
T λ = + − 

 
U

x
x Ψ x y F x ,                        (2) 

where TΨ  is a sparsifying transform of x , the 
1

⋅  stands for the 1  norm, which promotes 

the sparsity of TΨ x , and the 
2

⋅ stands for the 2  norm, which enforces the fidelity of the 

reconstruction to the measured k-space data. The regularization parameter λ  decides the 

tradeoff between the sparsity and the data fidelity.  
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Although CS-MRI is promising for reconstruction from undersampled k-space data, the usage 

of a pre-defined sparsifying transform sometimes lead to an insufficient sparse representation for 

certain types of images, thus results in artifacts in the reconstruction. For example, the commonly 

used 2D separable wavelet fails in capturing smooth contours (Gho et al., 2010; Qu et al., 2010b) 

and finite difference may introduce staircase artifacts (Knoll et al., 2011; Ying and Jim, 2011) at 

high undersampling factors. Our aim is to construct a better sparsifying transform by making use 

of the nonlocal similarity of image patches to achieve higher undersampling factors than 

conventional CS-MRI. 

 

2.2 Undersampled MR image reconstruction with patch-based nonlocal operator 

The proposed method assumes that a guide image is available to give a good estimate of 

nonlocal similarity for image patches. This nonlocal similarity information is integrated as prior 

information into the proposed patch-based nonlocal operator (PANO), which is utilized to 

establish a general reconstruction formulation. The essential component of the proposed method 

is the design of the PANO. To introduce the concept of PANO, we have to introduce the idea of 

nonlocal similarity. 

2.2.1. Patch-based nonlocal operator 

Patch grouping is shown in Fig. 1. For a given image N∈x  , we first decompose it into 

patches with fixed size L L× . Let iP  defines the patch decomposition, and the thi patch 

2L
i ∈b   is expressed as i i=b P x . The jv  group of image patches is denoted as 

jv iR b  where 

{ }1, ,j Qv i i=   stores the index of patches. Let 3DΨ  be a 3D transform, we define the nonlocal 

operator PANO as 

3 jj D v i=A Ψ R P .                         (3) 

If only one patch is available in a group, 3DΨ  is reduced to a 2D sparsifying transform, e.g. 

discrete cosine transform or Haar wavelet transform.  

 

An optimal grouping is that 

j j=α A x                                (4) 

leads to produce sparse coefficients. The adjoint operator T
jA  is 3j

T T T T
j i v D=A P R Ψ  and it 

satisfies 
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if 3DΨ is an orthogonal transform, where no  is a counter indicating the times that the thn  pixel 

is grouped into the 3D arrays. Therefore, an image is estimated from PANO coefficients 

according to 

1

1

ˆ
J

T
j j

j

−

=

= x O A α .                       (6) 

The invertibility of O  requires that each pixel must be contained in at least one group. 

 

Fig.1. Group image patches. (a) An image with 6×6 pixels; (b) four groups of patches; (c) the patch and 
group dimension.  
 

2.2.2. Choice of grouping 

In this paper, similar patches are grouped to produce sparse coefficients since it shows great 

potentials to improve the MR image reconstruction (Akçakaya et al., 2011; Egiazarian et al., 

2007).  

Fig. 2(a) illustrates how to group similar patches. For a search region Ω  and the reference 

patch T , we measure the similarity between the reference patch and a candidate patch using the 

2  norm distance 

( ) ( ) ( )
2

, , ,d L L= −T b T r b r .                      (7) 

1Q −  candidates with the smallest distance are selected as similar patches. This process is called 

block matching (Dabov et al., 2007). Since the available search region can be as large as the 

entire image, the similar patches are not limited to a local region. Thus, the similarity is nonlocal. 

Performing the 3D Haar wavelet transform on this group, spares coefficients are produced 

due to the similarity of these patches. An example is shown in Fig. 2. 15 similar patches and the 

reference patch are grouped in Fig. 2(c). Fig. 2(d) shows that 3D Haar wavelet coefficients of the 

3D array decay much faster than the coefficients of 2D Haar wavelet and the pixel values of 

these patches. This observation implies that 3D Haar wavelets can provide sparser vectors of 

these grouped patches than 2D Haar wavelets. 
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Fig.2.  Illustration of the similar patches found via block matching and the sparsity results in. (a) A search 

region Ω  with 39 39D D× = ×  and the reference patch T  with 8 8L L× = × ; (b) 16Q =  similar 

patches found by the 2  norm distance measure with patch size 8L = ; (c) 3D array stacked from the 

similar patches, and (d) curves for decay of pixel values, 2D and 3D wavelet coefficients. 

 

If we rearrange the Q  similar patches into a 3D array L L Q× ×∈B   according to the sorted 

distance d  and perform the 3D Haar wavelet transform on this array, a spares vector can be 

produced due to the similarity of these patches. The entire process is illustrated in Fig. 2. 15 

similar patches and the reference patch are grouped in to a 3D array in Fig. 2(c). Fig. 2(d) shows 

that 3D Haar wavelet coefficients of the 3D array decay much faster than the coefficients of 2D 

Haar wavelet and the pixel values of these patches. This observation implies that 3D Haar 

wavelets can provide sparser vectors of these grouped patches than 2D Haar wavelets. This 

sparsity motivates us to combine grouping similar patches with PANO and introduce this 

operator in MRI reconstruction that is described in Section 2.2.3. 

 

2.2.3. Undersampled MRI Reconstruction model using PANO 

Based on the observation that jα is sparse when similar patches are grouped, we propose to 

reconstruct the MR image from undersampled k-space data by solving the following problem 

2

21
1

ˆ arg min
2

J

j
j

λ
=

= + − U
x

x A x y F x                   (8) 

where the term 
1

1

J

j
j=
 A x promotes the sparsity and the term 

2

2
− Uy F x  enforces the data 

consistency. λ  trades the sparsity with the data consistency.  

2.2.4. Numerical algorithm 

To solve the problem in Eq. (8), we use the variable splitting and quadratic penalty technique 

proposed in (Yang et al., 2009) because of its advantage in handling the 1  norm-based 

optimization with image patches (Chen et al., 2010; Qu et al., 2012). 

Base on the original algorithm, we rewrite Eq. (8) as 
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 ( )2

21,
1

min . .  1, 2, ,
2

J

j j j
j

s t j J
λ

=

+ − = = Ux α
α y F x α A x  .          (9) 

A relaxed unconstraint form of Eq. (9) is written as 

 
2 2

21 2,
1

min
2 2

J

j j j
j

β λ
=

 + − + 
 

 Ux α
α α A x y F x- .              (10) 

The solution of Eq. (10) approaches that of (9) as β → ∞ [7]. For practical implementation, 

with β  gradually increasing, we use the previous solution as a ‘warm start’ for the next 

alternating optimization.  

When β  is fixed, Eq. (10) can be solved in an alternating fashion as follows: 

For a fixed x , solve 

 
2

1 2
ˆ arg min

2j

j j j j

β= + −
α

α α α A x ,                     (11) 

whose solution is obtained via soft thresholding for each jα  

 
1 1

ˆ , max ,0 j
j j j

j

S
β β

   = = −   
   

A x
α A x A x

A x
.                  (12) 

For fixed ( )1,2, ,j j J=α  , solve 

 
2 2

22
1

ˆ arg min
2 2

J

j j
j

β λ
=

 = − + 
 

 Ux
x α A x y F x- .                 (13) 

The minimizer of Eq. (13) is given by the solution of the normal equation 

 
1 1

J J
T H T H
j j j j

j j

β λ β λ
= =

 
+ = + 

 
 U U UA A F F x A α F y                    (14) 

which can be simplified as 

 H Hβ λ β λ+ = +U U α UOx F F x v F y .                       (15) 

by incoporating Eq.(5) and the term 

 
1

J
T
j j

j =

=αv A α                              (16) 

is an assembled image reconstructed from patches in all group. We use the linear conjugate 

gradient method to solve Eq. (15) (Shewchuk, 1994).  

Overall, increasing β  is accomplished in the outer loop of the iterative algorithm which 

will be terminated when β  is sufficiently large. For a fixed β , Eq. (10) is solved in the inner 

loop which will be terminated when the increment of x  is smaller than a given tolerance η . 

The algorithm is summarized in Algorithm 1. The proof of the convergence of the algorithm is 

similar to the one given in (Wang et al., 2008) with slight modifications, and thus is omitted here.  
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Algorithm 1. MRI reconstruction via patch-based nonlocal operator (PANO) with fixed 
similarity relationship 

Initialization: Input the PANO ( )1, ,j j J=A  , acquired k-space data y , diagonal matrix 

O  and the fast operator UF , regularization weight λ  and tolerance of inner loop 35 10η −= × . 

Initialize H= Ux F y , last =x x , 62β = , 12
max 2β = , and j =α 0  for all 1,2, ,j J=   

Main: 

While maxβ β≤  

  1. For 1j =  to J , given x , solve Eq. (12); 

  2. Update the assembled image αv  using Eq. (16); 

  3. Solve Eq. (15) with linear conjugate gradient method and the solution is x ; 

4. If last

last

η
−

Δ = >
x x

x
x

, last ←x x , go to step 1; Otherwise, go to step 5; 

5. lastˆ ←x x , 2β β← , go to step 1. 

Otherwise End While 

Output: x̂  

 

2.2.5. Learn the nonlocal similarity from undersampled data 

In the sections above, we assume that the nonlocal similarity is learnt from an available fully 

sampled image. In this section, we will discuss how to obtain a proper guide image to learn the 

nonlocal similarity from undersampled data. It is interesting to note that the concept of using 

guide images has been previously used in medical image superresolution problems (Manjon et al., 

2010; Rousseau, 2010). 

We consider estimating the nonlocal similarity from a guide image reconstructed from: 

1) Low-frequency k-space measurements; 

2) Zero-filling k-space by filling zeros into the un-sampled k-space; 

3) Conventional CS-MRI method. 

The 1st scheme is adopted in (Akçakaya et al., 2011) and only utilizes the low-resolution 

image (Fig. 3(d)) assuming that low-frequency k-space data are sufficient to approximately 

represent the similarity relationship. The 2nd and 3rd schemes explore all the acquired k-space 

data. The 2nd scheme results in obvious artifacts in the guide image (Fig. 3(e)) and the 3rd scheme 

depends on good CS reconstruction method to remove the artifacts (Fig. 3(f)). In the 3rd scheme, 

the shift-invariant discrete wavelet transform (SIDWT) (Baraniuk et al., 2009) is utilized with 

variable splitting and quadratic penalty technique (Yang et al., 2009) to reconstruct the guide 

image. We choose SIDWT because it can mitigate blocky artifacts introduced by orthogonal 

discrete wavelet transform (Baker et al., 2011; Hu et al., 2011). SIDWT in (Baraniuk et al., 2009) 
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is adopted for its efficient implementation. How these guide images affect the reconstruction will 

be analyzed in the section 3.1.  

 

Fig.3. Comparison of different guide images. (a) variable density Cartesian sampling pattern with sampling 

rate 0.40; (b) locations of low-frequency k-space data; (c) the fully sampled MR image; (d) reconstructed 

image from only the low-frequency k-space data; (e) reconstructed image from zero-filled k-space data; (f) 

reconstructed image from SIDWT. 

 

Once the guide image is reconstructed, it is utilized to learn the patch similarity assuming this 

guide image appropriately represents the similarity of nonlocal patches. The similarity 

information guides the design of PANO to achieve the sparse vectors of grouped similar patches. 

Then, image x  is reconstructed by regularizing the 1  norm of the sparse vectors. The 

proposed scheme is shown in Fig. 4.  
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Fig.4. Flowchart of the proposed PANO-based MRI reconstruction from undersampled data. 

 

If the PANO-based reconstruction can improve the reconstruction, one may consider further 

learning the similarity from the subsequent reconstruction. An improved algorithm with the 

updated guide image is shown in Algorithm 2. 

Details on how guide images affect the final reconstruction are discussed in Section 3.1. 

 

Algorithm 2. PANO-based MR reconstruction with updated guide images 
Initialization: Set the times of updating the guide image as 2Q = . Input the acquired 

k-space data y , the fast operator UF , 3D fast Haar wavelet operator 3DΨ , regularization 

weight λ  and the tolerance of inner loop 35 10η −= × . Initialize H= Ux F y , last =x x , 

62β = , j =α 0  for all 1,2, ,j J=  , and 1q = . 

Main: 

1. Obtain the 1st guide image 1x  by solving Eq. (2) with SIDWT as the sparsifying 

transform; 

For 1, ,q Q=   

2. Estimate ( )1,2, ,
jv j J=R   from thq guide image according to Eq. (7); 

3. Update the diagonal matrix 
J

T
j j

j

=O A A ; 

4. Reconstruct x̂  using Algorithm in 1 with updated ( )1,2, ,
jv j J=R   and O ; 

5. Update reconstructed image ˆ ˆq ←x x  and the guide image 1q+x ; 

6. Update 1q q← +  

End For 

Output: ˆ Qx  
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3. Results 

To evaluate the performance of the proposed method, how the guide image affects the final 

reconstruction will be analyzed first. Then, the performance of the proposed method is 

demonstrated with experimental data at various undersampling factors. Sparsity-based image 

reconstruction using two typical sparsifying transforms, total variation (TV) (Block et al., 2007; 

Haldar et al., 2011; Lustig et al., 2007) and SIDWT, are compared with the proposed 

PANO-based image reconstruction method. All these methods are implemented with variable 

splitting and quadratic penalty technique (Yang et al., 2009). Default parameters of the algorithm 

are shown in Algorithm 1. The Daubechies wavelet with 4 decomposition levels is utilized for 

SIDWT. For the proposed method, the similar blocks are found from the magnitude of image. 

Empirically, learning similarity from magnitude image performs slightly better than separately 

learning from imaginary and real parts. 

To evaluate the reconstruction error, we use the relative 2  norm error (RLNE) defined as 

( ) 2

2

ˆ
ˆe

−
=

x x
x

x




                       (17) 

to measure the difference of reconstructed image x̂  and fully sampled image x .  

The fully sampled complex MR image (size 256×256), as shown in Fig. 2(c), is acquired 

from a healthy volunteer at a 3T Siemens Trio Tim MRI scanner using the T2-weighted turbo 

spin echo sequence (TR/TE=6100/99 ms, 220×220 mm field of view, 3 mm slice thickness). We 

do the SENSE reconstruction with reduction factor 1 to compose full k-space of gold standard 

images. These full k-space data will be used for emulate single-channel MRI. 

The signal-to-noise ratio (SNR) of this data is 33, which is measured on the magnitude image 

according to 

 SNR=
μ
δ

,                    (18) 

where μ  is the mean of image and δ  is the standard deviation of noise extracted from the 

background of image (Dietrich et al., 2007; Henkelman, 1985; Qu et al., 2012). 

 

3.1. Effects of the guide image 

The sampling pattern with the gradually varying sampling density from the k-space center 

outwards is shown in Fig. 3(a). 

With the fully sampled image as the guide image, one can learn the best similarity. By 

integrating this similarity information into PANO, a high quality reconstruction, shown in Fig. 

5(a), is obtained from undersampled data.  

When only the undersampled data is available and only learning the similarity from guide 

image for one time, some artifacts are observed in the reconstructed images with the guide  
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Fig.5. Images reconstructed using proposed method with the different guide images (a) fully sampled 

image in Fig. 3(c), (b) low-resolution image in Fig. 3(d), (c) zero-filling image in Fig. 3(e), and (d) 

conventional CS-MRI reconstruction in Fig. 3(f). The RLNEs of (a)-(d) are 0.077, 0.087, 0.083, 0.081. 

 

images from the low-resolution image. Using zero-filling image or SIDWT-based reconstruction 

as the guide image, the aliasing artifacts are less. 

For different initial guide images, very similar reconstruction error, shown in Fig. 6(a), are 

obtained by iteratively learning the similarity from PANO-based reconstructed images. This is 

mainly because of the properly reconstructed image using PANO although some strong artifacts 

are existed in the initial guide image in Figs. 3(d) and (e). By further learning similarity from 

images in Fig. 5, very similar reconstructed images are achieved which are not shown to save 

pages. This implies that the iterative learning similarity in the proposed method is not sensitive to 

the initial guide image. The same observation are found for lower sampling rate in Fig. 6(b) and 

another sampling pattern in Fig. 6(c) where the sampled low-frequency k-space data are 25% of 

all the sampled phase encodings while the rest sampled k-space data are randomly selected. 

Testing on other image slices acquired on the same volunteer using same pulse sequence are 

consistent to the observation here.  

We suggest adopting the zero-filling image as guide image since it makes use of all the 

sampled data and does not require extra computation except one time fast Fourier transform. 

 

Fig.6. Reconstruction error of the PANO method with updated guide images. Note: The “0” in the axis 

means the RLNE between the guide image and the fully sampled image. (a) and (b) are RLNE curves for 

the undersampled simulated data with sampling rate 0.40 and 0.28, respectively; (c) is the RLNE cure for a 

sampling pattern where more sampled data are sampled in high-frequency k-space with sampling rate 0.40.  
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3.2. Comparison with conventional CS-MRI methods 

The variable density sampling pattern, shown in Fig. 7(a), is utilized to undersample the 

k-space data. λ  is set as 610  for PANO, SIDWT and TV. All the reconstruction problems are 

numerically solved using the variable splitting and quadratic penalty technique (Yang et al., 

2009). 

Only with the undersampled data, the conventional CS-MRI with SIDWT or TV leads to 

obvious artifacts shown in Figs. 7(c) and (d). The proposed PANO-based method preserves the 

fine edges and does not introduce obvious artifacts as shown in Fig. 7(e). Visual inspection is 

consistent with the reconstruction error evaluation shown in Fig. 8. The proposed method reduces 

the reconstruction error of traditional CS-MRI methods nearly by 30% and produces the lowest 

RLNE among all the three reconstruction methods.  

 

 

Fig.7. Comparison of reconstructions from different methods (SNR=33). (a) The Cartesian sampling 

pattern with sampling rate 0.40; (b) fully sampled image; (c) reconstructed image using TV, the 

RLNE=0.111; (d) reconstructed image using SIDWT, the RLNE=0.114; (e) reconstructed image using 

PANO (guide image reconstructed from incomplete data), the RLNE= 0.059; (f) reconstructed image using 

PANO (guide image reconstructed from fully sampled data), the RLNE= 0.057. 
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The reconstruction of the proposed method with similarity learnt from undersampled data is 

very close to that using the proposed method with the similarity extracted from the fully sampled 

data (shown in Figs. 7(e) and (f)). The error is nearly the same when the sampling rate is 

relatively high (greater than 0.35 as shown in Fig. 8). This implies that if the sampling rate is 

relatively high, our method may fully take advantage of the nonlocal similarity of the unknown 

image. 

When the k-space data are highly sampled (lower than 25%), the reconstructed images with 

similarity learnt from undersampled data is sub-optimal comparing with those with similarity 

leant from fully sampled data. This leaves the chance to incorporate other prior information to 

help image reconstruction that will be described in Section 3.3. 

 

Fig.8. The reconstruction error versus sampling rate. 

 

3.3. Image reconstruction with similarity learnt from multi-contrast images 

   In MRI experiments, multi-contrast images may be acquired. For example, T1 and T2 

weighted images are usually used in clinical diagnosis. Sometimes anatomical information is 

shared in these contrast images as shown in Figs. 9(a) and (c). It is possible to learn semilarities 

from one contrast image and incorporate this information into another contrast image 

reconstruction. When T2 weighted image is undersampled at sampling rate 0.25, PANO fails to 

reconstruct the edges as shown in Fig. 9(c). By learning the similarity from the fully sampled T2 

weighted image, edges are reconstructed much clearer.  
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Fig.9. Reconstructed images by learning similarities from another contrast image. (a) fully sampled image 

T2-weighted image; (b) reconstructed image using PANO (guide image reconstructed from 25% 

T2-weighted image data), the RLNE=0.109; (c) fully sampled T1-weighted image; (d) reconstructed image 

using PANO (guide image reconstructed from 100% T1-weighted image data), the RLNE=0.070. Note: 

The complex images in (a) and (c) are acquired from a healthy volunteer at a 1.5T Philips MRI scanner 

with sequence parameters (T1-weighted image: TR/TE=1700/390 ms, T2-weighted image: TR/TE= 

3000/800ms, both images are with 230×230 mm field of view, 5 mm slice thickness). 

 

4. Discussion 

4.1. Sampling patterns 

To test the performance of PANO with different sampling patterns, the pseudo radial 

sampling (Chen et al., 2010; Qu et al., 2010b; Trzasko and Manduca, 2009), shown in Fig. 9(a) 

and 2D random sampling (Lustig et al., 2007; Qu et al., 2010b; Ravishankar and Bresler, 2011), 

shown in Fig. 10(b), are used to undersample the k-space data of Fig. 3(c). Reconstruction errors 

shown in Figs. 10(a) and (b) indicate that the proposed algorithm consistently outperforms the 

conventional CS-MRI methods when the sampling rate is smaller than 0.4. This implies that the 

proposed method can consistently improve the reconstruction of traditional wavelet-based or 

TV-based reconstruction for a larger class of sampling patterns.  

 

 

Fig.10. The RLNEs versus sampling rates for Fig. 7(b) (SNR=33). (a) and (b) are RLNE curves for the 

psudo radial and 2D random sampling patterns, respectively. Note: For the 2D random sampling pattern, 

the central region corresponds to 12.5% of all the sampled data. 
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For the same sampling rate, two type of varying sampling density shown in Figs. 3(a) and 7(b) 

are analyzed in Fig. 11. Comparisons on Fig. 11(a) with Fig.11 (b), and Fig. 11(c) with Fig. 11 

(d), imply that the gradually varying sampling density (Fig. 3(a)) will reduce the overall 

reconstruction error for SDIWT but it leads to loss of edge structures for both SIDWT and PANO. 

SIDWT with sampling pattern of more high-frequency data (Fig. 7(b)) obtains sharper edges in 

Fig. 11(b) but it introduces aliasing artifacts in the smooth region. These artifacts are removed 

using PANO as shown in Fig. 11(d). One explanation for this is that PANO may sparser represent 

the low-dimensional structures (Akçakaya et al., 2011), e.g. smooth region, than conventional 

sparsifying transform. Therefore, for a given sampling rate, assigning more high-frequency data 

for PANO will improve the reconstruction of edges but the aliasing artifact in the smooth region 

is still suppressed. For each sampling pattern, PANO preserves the edges better than SIDWT by 

comparing Fig. 11(b) with Fig. 11 (c), and Fig. 11(b) with Fig. 11 (d). Overall, PANO 

outperforms SIDWT in terms of preserving the edge and lower reconstruction error. 

 

Fig.11. Comparisons on variable density sampling pattern at sampling rate 0.40. (a) and (b) are 

reconstructed images using SIDWT with the sampling patterns in Fig. 3(a) and Fig. 7(a) respectively, (c) 

and (d) are reconstructed images using PANO with the sampling pattern in Fig. 3(a) and Fig. 7(a) 

respectively. The RLNEs of (a)-(d) are 0.098, 0.114, 0.077, and 0.059.  

 

In paractice, the pseudo radial and 2D random sampling patterns could be useful for 3D 

imaging where 2D phase encodings are available and 2D undersampling are applicable. For 

example, Cartesian sampling with CAPR (Cartesian Acquisition with 

Projection-Reconstruction-like) may be constructed and tends to exhibit properties similar to 

non-Cartesian radial trajectories in 3D imaging (Trzasko et al., 2011). In 2D imaging, radial 

(Block et al., 2007; Knoll et al., 2011) or spiral trajectories (Seeger et al., 2010) can be used to 

undersample k-space data. They are more realistic to accelerate imaging than 1D random 

sampling. However, regridding in non-uniform FFT for spiral or radial may affect the grouping 

of similar patches thus PANO should be applied carefully. 

 

4.2. Reconstruction on more brain images 

In this section, we will demostrate the proposed method works better than convenitonal 



 

 18

CS-MRI for T2-weighted brain image. Four images, shown in Fig.12, acquired with the same 

pulse sequences on 3T Siemens Trio Tim MRI scanner. We do the SENSE reconstruction with 

reduction factor 1 to compose full k-space of gold standard images. The sampling pattern shown 

in Fig. 7(a) with 40% k-space data are used for reconstruction. Reconstruction error shown in 

Table 1 implies that PANO always performs better than SIDWT and TV does. Due to the limited 

access to the k-space data, only T2-weighted brain images are analyzed. Verification of the 

proposed method on more datasets is worthy further investigation. 

 

 

Fig.12. Four T2-weighted images. 

 

Table 1. The Reconstruction error RLNEs for other four images. 

Images 
Reconstruction methods

TV SIDWT PANO

Fig.12(a) 0.121 0.120 0.085
Fig.12(b) 0.113 0.113 0.074
Fig.12(c) 0.109 0.111 0.069
Fig.12(d) 0.113 0.116 0.095

 

4.3. Sampled data with more noise 

To demonstrate the ability of the proposed method in handling noise, Gaussian white noise 

with standard deviation 0.015 was added to both the real and the imaginary parts of the original 

k-space data. The SNR is changed to 10. We specify the regularization parameters be 23 10λ = ×  

for TV-based reconstruction, 22 10λ = ×  for SIDWT-based reconstruction, and 310λ =  for the 

proposed methods. In simulation, regularization parameters of different methods are manually 

optimized to achieve the minimum RLNEs and remove most of the noise by maintaining 

SNR≥15 in the reconstructed images. Empirically, the adaptive 3×3 Wiener filtering is helpful 

and utilized to remove the artifacts and noise from the guide image in the proposed method. 

Obvious artifacts in the reconstructed images are observed for TV-based, and SIDWT-based 

CS-MRI methods (shown in Figs. 13(c)-(d)), while the proposed method preserves the edges of 

the reconstructed image (shown in Fig. 13(e)).  

By incorporating a TV constraint ( )TV x  into the PANO reconstruction as 
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( ) 2

21
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ˆ arg min TV
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x A x x y F x ,           (19) 

where γ  trades PANO sparsity with finite-differences sparsity, and setting 1γ =  and 310λ = , 

the noise is further reduced in the reconstructed images comparing Fig. 13(e) with Fig. 13(f). The 

SNR is increased from 22.47 and 28.00. This implies that TV is helpful for PANO to remove the 

noise.  

 

Fig.13. Reconstructed images from noise-added k-space data (SNR=9.60) with variable density Cartesian 

sampling pattern at sampling rate 45%. (a) reconstructed image from fully sampled data (SNR=33), (b) 

reconstructed image from fully sampled data with added noise (SNR=9.60), (c)-(f) are reconstructed 

images from undersampled data using TV, SIDWT, PANO, and PANO+TV respectively. The RLNEs of 

(c)-(f) are 0.129, 0.124, 0.099 and 0.100, respectively.  The SNRs of (d)-(g) are 16.0, 16.40, 22.47 and 

28.00, respectively.  

 

4.4. Parameters in PANO 

Additional parameters of PANO include the number of similar patches ( Q ), patch size ( L ), 

and the size of search range ( D ). How these parameters affect the reconstruction will be 

analyzed in this section. 

Increasing Q  will reduce the reconstruction error and will not significantly change the error 

when 8Q ≥  as shown in Fig. 14(a). 8Q =  is suggested since the computation complexity of 
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one forward/backward PANO is proportional to Q .  

Increasing L  will increase the reconstruction error and 8L =  is suggested. But the change 

of RLNE is relatively small (smaller than 0.01) when the patch size is relative small ( 16L ≤  for 

the image size 256 256× ). This is shown in Fig. 14(b). Too large patch size ( 32L ≥  for the 

image size 256 256× ) will increase the reconstruction error. One reason may be similarity 

between the two large size patches is not obvious than that of small size patches, which results in 

the sparsity is not sufficient for image reconstruction.  

Different D  will achieve very close reconstruction error as shown in Fig. 14(c). This 

implies that the proposed method is not sensitive to the search range. The reconstruction error 

slightly increases (change of RLNE is smaller than 0.005) when D  is large ( 80D ≥  for the 

image 256 256× ). Ideally, if the fully sampled image is available to serve as guide image, the 

reconstruction error nearly does not change by increasing as shown in Fig. 14(c). This implies 

too large ( 80D ≥  in our case) search arrange does not mean better reconstruction for the 

undersampled MRI reconstruction if D  is large enough. One reason for the slightly increased 

reconstruction error may be that searching the similar patches is not exactly right for the guide 

image reconstructed from undersampled data. Therefore, 15 80D≤ ≤  is suggested. 

Since the Q  similar patches are re-ordered into 3D array according to sorted 2  norm 

distance between the reference patch and similar patches, it is meaningful to analyze how this 

reordering can affect the reconstruction. The proposed PANO-based method is not sensitive to 

the re-ordering as demonstrated in Fig. 14(d). For the 8 similar patches, the order of partial 

patches in each 3D array is randomly permutated. The reconstruction error only slightly increase 

(smaller than 0.005) when the order of all the patches in are permutated within each 3D array. 
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Fig.14. The RLNEs of PANO versus the parameters. (a) Q  (number of similar patches in each 3D array) 

when 8L =  and 39D = , (b) L  (patch size) in PANO when 8Q =  and 39D = , (c) D  (size of 

search range) when 8L =  and 8Q = , and (d) the ratio of permuted patches in each 3D array in PANO 

when 8L = , 8Q =  and 39D = . 

 

4.5. Regularization parameters 

The regularization parameter λ  trades the sparsity and data consistency. Generally, the 

regularization parameter can be selected using the L-curve method by plotting the sparsity term 

against the fidelity term (Adluru and DiBella, 2008; Wu et al., 2011). However, L-curve method 

requires implementing the reconstruction more than one time, thus it is time consuming. One can 

also try the robustness choice of parameters by incorporating the adaptive regularization derived 

from maximum likelihood estimate  (Chen et al., 2010). Another choice is to set the 

regularization parameter corresponding to the lowest threshold for a blindly estimate the noise 

level (Hu et al., 2011). 

The data we used in this paper is with high SNR, thus the regularization parameter λ  can be 

largely enough ( 610λ =  in our case). We observed that 610λ > will not obviously change the 

reconstructed image and the reconstruction error RLNE. For the manually added noise, λ  is 

chosen carefully to achieve the lowest RLNE and remove most noise by maintaining SNR≧15. 

Design a robustness regularization parameter will be our future work. 
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4.6. Comparision with other CS-MRI reconstruction methods 

In this section, we compare the proposed method with some previously proposed CS-based 

reconstruction methods. These methods include Lustig’s method (Lustig et al., 2007), Yang’s 

method (Yang et al., 2010), Chen’s method (Chen and Huang, 2012) , Huang’s method (Huang 

and Yang, 2012) and Egiazarian’s method (Egiazarian et al., 2007), repectively. Egiazarian’s 

method adopts recursive spatially adaptive filtering to reconstruction 2D image and its extenstion 

into 3D image reconstruction is in (Maggioni et al., 2013).  

Results in Fig.15 imply that Chen’s method (Fig. 15(d)), enforcing wavelet tree sparsity, 

outperforms Lustig’s (Fig. 15(b)) and Yang’s (Fig. 15(c)) methods in terms of lower 

reconstruction errors. Huang’s method (Fig. 15(d)) further improves the reconstructed edges by 

incorporating nonlocal total variation. Edges are preserved well using Egiazarian’s method (Fig. 

15(e)) by making use of non-local patch based redundancy but obvious artifacts are observed in 

the smooth region. The proposed method outperforms these methods in term of visual quality and 

reconstruction errors. The lowest reconstruction errors, listed in Table 2, imply that the superior 

performance of the proposed method still holds for other tested images. In summary, the 

proposed method outperforms other methods in term of better image quality and lower 

reconstruction errors. 

 

Fig. 15. Reconstructed images using other CS-MRI methods and PANO when 40% data are sampled. (a) is 
the fully sampled image, (a)-(f) are reconstructed images using Lustig’s, Yang’s, Chen’s, Huang’s, 
Egiazarian’s and the proposed method. RLNEs of (a)-(d) are 0.140, 0.106, 0.091, 0.083, 0.093 and 0.060, 
respectively. 
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Table 2. RLNEs for other four images using other CS-MRI reconstruction methods. 

Images 
Reconstruction methods 

Lustig’s Yang’s Chen’s Huang’s Egiazarian’s Proposed 

Fig.12(a) 0.156 0.115 0.108 0.099 0.106 0.085 
Fig.12(b) 0.156 0.122 0.111 0.104 0.104 0.074 
Fig.12(c) 0.153 0.116 0.102 0.097 0.108 0.069 
Fig.12(d) 0.149 0.130 0.126 0.120 0.147 0.095 

 

4.7. Reordering patches versus reordering pixels 

Re-ordering the pixels with a guide image to enhance the sparsity and improve reconstruction 

was previously investigated in undersampled MRI reconstruction (Adluru and DiBella, 2008; Wu 

et al., 2011). We name these methods as re-order pixels-based sparse reconstruction (RPSR). The 

key difference is our reordering is implemented among the most Q  similar patches while RPSR 

reordering for all the pixels. The advantage of the patch-based re-ordering is that this method can 

attenuate the influence of the aliasing on the accuracy of the sorting, which results in 

PANO-based method is not sensitive to the re-ordering in undersampled MRI reconstruction, as 

shown in Fig. 14(d). 

One simulation is conducted to compare the performance of RPSR with the proposed PANO. 

The RPSR is implemented according to literature (Adluru and DiBella, 2008). With the fully 

sampled image as guide image, both RPSR and PANO can reconstruct the MR image very well 

as shown in Fig. 16. RPSR preserves the image details better than PANO. However, fully 

sampled guide image is not available in practice. With a guide image estimated from 

undersampled data, RPSR does not remove some artifacts in the reconstruction but PANO can. 

This implies RPSR is more sensitive to the guide image than PANO.  

 

 

Fig.16. Comparison on the reconstructed image with RPSR and PANO methods. (a) and (b) are 

reconstructed images using RPSR and PANO methods with fully sampled image as guide image, (c) and (d) 

are reconstructed images using RPSR and PANO methods with TV-based undersampled k-space 

reconstruction as guide image. RLNEs of (a)-(d) are 0.028, 0.057, 0.114 and 0.059, respectively. Note: the 

sampling rate is 0.40 and the sampling pattern is shown in Fig. 6(a), the SNR of fully sampled image is 30. 

We tried several guide images from undersampled data for RPSR, and TV-based conventional CS-MRI 

reconstruction leads to the lowest reconstruction error in RPSR. 
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4.8. Reconstruction raw k-space data 

To start with raw k-space data acquired from a real scanner, we undersample k-space data of 

each channel according to 1D random sampling pattern shown in Fig. 7(a). Then we reconstruct 

images channel-by-channel and compose the final image by performing some-of-square on these 

single-channel images. Fig. 17 shows that edges are preserved better and lower reconstruction 

errors are achieved using PANO than SIDWT and TV.  

 

Fig.17. Reconstructed images using raw k-space data of each channel acquired from a real scanner. (a) 

Some-of-square image reconstructed from each channel data with fully sampling, (b)–(d) are 

some-of-square images reconstructed from each channel data with 1D undersampling using TV, SIDWT 

and PANO, respectively. The reconstruction error RLNEs for (b)–(d) are 0.080, 0.073 and 0.062, 

respectively. Note: 40% data are sampled according to the sampling pattern in Fig. 7(a).  

 

4.9. Computation time 

The programs run on 8 Cores 3.4GHz CPU desktop computer with 8GB RAM. The process 

from the image patches to 3D Haar wavelet coefficients and the soft thresholding on wavelet 

coefficients are implemented with C++. Without considering the iterations in the numerical 

algorithm, the computational complexity of one forward/backward PANO is ( )O NQ  where N  

is the number of total pixels in a 2D image and Q  is the number of similar patches in each 3D 

array. We designed a multi-thread computation for the 3D wavelet transform on 3D cubes and 

soft thresholding in PANO. It accelerate the forward/backward PANO by a factor of 3 when 8 

threads is applied on our platform. The total reconstruction time of the proposed method is 73 

seconds, as shown in Table 3, which we believe is acceptable for many applications which do not 

require online reconstruction. We also expect to further speed up the reconstruction by using 

more advanced computing architectures such as general purpose graphics processing units (Zhuo 

et al., 2010). 
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Table 3. Computation time for different methods (units: seconds). 

The proposed method TV SIDWT
Initial guide image 1st PANO 

reconstruction 
2nd PANO 

reconstruction 
Total computation 

time 

11 7.6 
Zero-filling image 42.3 30.5 72.8 

Low-frequency 
k-space data 

41.5 30.6 72.1 

SIDWT-based 
reconstruction 

41.9 30.6 72.5 

Note: Computations were performed on 8 Cores 3.4GHz CPU desktop computer with 8GB RAM. 40% 
k-space data of Fig. 2(c) is reconstructed with parameters of PANO L=8, Q=8, and D=39.  
 

5. Conclusions 

A new MR image reconstruction method is presented. The proposed method exploits 

nonlocal similarity of image patches by establishing a patch-based nonlocal operator, PANO, 

which effectively produces sparse vectors by operating on grouped similar patches of the image. 

A reconstruction formulation is proposed to incorporate a sparsity constraint on PANO-produced 

coefficients, which can be considered as a generalization of previously proposed patch-based 

reconstruction methods. Simulation results based on fully sampled experimental data 

demonstrated consistent improvement in reconstruction accuracy of the proposed method over 

conventional CS-MRI reconstructions and several alternative CS-based reconstructions. We have 

also shown that the similarity information required by PANO can be iteratively learnt from a 

guide image reconstructed from undersampled k-space data and the proposed method is not 

sensitive to the initial guide image. In general, only learning the similarity twice is sufficiently 

enough to maximize the performance of the proposed method for the tested images. When the 

data are highly undesampled, learning the similarity from another contrast image with fully 

sampled data greatly improve the reconstruction. 

Further improvement and verification on the methods may be made from the following 

aspects: 

1) Designing a fomulation for joint similarity learning and image reconstruction. For 

example, one may consider to simultaneously learning of similarity for sparser 

representation and performing reconstruction with a surrogate function (Elad et al., 

2007). 

2) Speed up the imaging with non-Cartesian sampling. Radial (Block et al., 2007; Knoll et 

al., 2011) or spiral (Seeger et al., 2010) sampling may further accelerate the 2D imaging. 

But the availability of the guide image and how the gridding processes affect PANO 

should be carefully analyzed.  

3) Coming PANO with partially parallel imaging (PPI). PPI has been widely adopted 

clinically and Poisson-disk acquisition can dramatically reduce the g-factor in 3D PPI 

(Lustig and Pauly, 2010; Vasanawala et al., 2010). One may combine PANO with PPI to 
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accelerate the imaging in practical applications. But how the sensitivity map affects the 

similarity matching should be carefully treated.  

4) Test the method on more datasets acquired in real applications. All the comparisons in 

this paper are made on different slices of T2-weighted MR images acquired on the same 

volunteer. Given a specific MR clinical application, verification of the proposed method 

on more datasets acquired in real applications is worth of further investigation.  

5) Joint reconstruction with undersampling of all multi-contrast images (Bilgic et al., 2011; 

Huang et al., 2012; Majumdar and Ward, 2011; Qu et al., 2011) and extend the PANO 

into multimodal imaging reconstruction, e.g. computer tomograph and MRI.  
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