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Abstract 

Reducing scanning time is significantly important for MRI. Compressed sensing 

has shown promising results by undersampling the k-space data to speed up imaging. 

Sparsity of an image plays an important role in compressed sensing MRI to reduce the 

image artifacts. Recently, the method of patch-based directional wavelets (PBDW) 

which trains geometric directions from undersampled data has been proposed. It has 

better performance in preserving image edges than conventional sparsifying 

transforms. However, obvious artifacts are presented in the smooth region when the 

data are highly undersampled. In addition, the original PBDW-based method does not 

hold obvious improvement for radial and fully 2D random sampling patterns. In this 

paper, the PBDW-based MRI reconstruction is improved from two aspects: 1) An 

efficient non-convex minimization algorithm is modified to enhance image quality; 2) 

PBDW is extended into shift-invariant discrete wavelet domain to enhance the ability 

of transform on sparsifying piecewise smooth image features. Numerical simulation 

results on vivo magnetic resonance images demonstrate that the proposed method 

outperforms the original PBDW in terms of removing artifacts and preserving edges. 

 

Keywords: Compressed sensing; Accelerated imaging; MRI; Sparse representation; 

Non-convex optimization; Directional wavelets  
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1. Introduction  

Magnetic resonance imaging (MRI) is extensively used to visualize the 

anatomical or physiological structures of brain, heart, breast and other parts of human 

bodies. However, slow imaging speed in MRI may result in low spatial resolution in 

functional MRI [1] or motion artifacts in abdominal MRI [2] and cardiac MRI [3]. 

The k-space undersampling is one way to accelerate the imaging speed at the expense 

of introducing aliasing artifacts. Assuming that an image is sparse in a sparsifying 

transform, compressed sensing MRI (CS-MRI) [4] can remove these artifacts by 

randomly undersampling k-space data and enforcing the reconstructed image to be 

sparse. This technology has shown promising results in many MRI applications, such 

as brain imaging [4-8], cardiac imaging [9-13], parametric imaging [14] and catheter 

tracking [15]. In CS-MRI, the sparsity is usually enforced by minimizing the 1  

norm of transform coefficients [4]. Besides, enforcing low rank structures of MR 

images also successfully removes aliasing artifacts introduced by undersampling 

[10,11,13]. 

Sparsifying transform plays a key role in CS-MRI and sparser representations 

result in better reconstructions. Conventional CS-MRI usually use pre-constructed 

basis or dictionaries [4,16-19], which may not sparsely represents images to be 

reconstructed. Consequently, artifacts are presented in the reconstruction when 

k-space data are highly undersampled [20-25]. In contrast, adaptive transforms in 

CS-MRI will lead to lower reconstruction errors since a sparser representation is 

learnt from the sampled data [20-22].  

The patch-based directional wavelets (PBDW) [22] was recently proposed in 

CS-MRI to better reconstruct edges than conventional CS-MRI methods. PBDW 

provides sparser representation of images by estimating geometric directions from a 

reference image reconstructed using conventional CS-MRI methods. However, 

artifacts generated in the smooth regions of the reference image (Fig. 1(b)) lead to 

incorrect geometric directions (Fig. 1(e)) when k-space data are highly undersampled. 

These artifacts are hard to remove for PBDW as marked in Fig. 1(c) since PBDW 
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cannot sparsify the smooth regions better than conventional sparsifying transform as 

evidenced in the Section 3.4 of [22]. These artifacts may be viewed as meaningful 

edges and possibly mislead the diagnosis. 

 
Fig. 1 Reconstructed images from highly undersampled data. (a) fully sampled image; 
(b) and (c) are reconstructed images using shift-invariant discrete wavelets and 
PBDW with 30% of fully sampled data, respectively; (d) and (e) are estimated 
geometric directions from fully sampled image in (a) and reconstructed image in (b) 
using conventional CS-MRI methods; (f) reconstructed image by the proposed 
method.  

 

To overcome this limitation of the method proposed in [22], we take the 

advantage of multiscale decomposition on sparsely representing piecewise smooth 

features [26]. When the reference image is decomposed into coarse and fine subbands, 

artifacts in the smooth region are obviously weaken in the coarse subbands (Fig. 2(a)) 

and two of fine subbands (Figs. 2(b) and (c)). Artifacts in the smooth region are 

mainly observed in a fine subband representing vertical edges (Fig. 2(d)). Weaken 

pseudo edges will help PBDW to estimate right geometric directions. In addition, 

applying PBDW in the 2D wavelet subbands will achieve sparser representation of 2D 
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wavelet coefficients since large magnitude coefficients and re-transform them 

according to geometric directions will obtain many values close to zero [27,28]. As 

shown in Fig. 3, a faster decay of approximation error is achived using the proposed 

method than the original PBDW. When the 5% largest transform coefficients are 

preserved, PBDW fails to represent the smooth region while extending it into 2D 

wavelet domain will significantly imporve the representation. Therefore, applying 

PBDW in the 2D wavelet domain is expected to benefit PBDW removing the artifacts 

in smooth regions of reconstructed images. 

 
Fig. 2 Decomposed subbands in shift-invariant discrete wavelets domain when 
decomposition scale is 1. (a) a low frequency subband; (b)-(d) are three high 
frequency subbands. Note: The source image used in wavelet decomposition is Fig. 
1(b), which is also the reference image that geometric directions are estimated from. 
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Fig. 3 Sparsity of PBDW and the proposed PBDW in shift-invariant discrete wavelets 

(PBDWS) domain. (a) Approximation errors versus the precentage of preserved 

largest coefficients; (b) and (c) are approximated images when 5% preserved largest 

coefficients are used. Note: Reference image in Fig. 1(b) are used to estimate 

geometric directions. 

 

Non-convex optimization with ( )0 1p p≤ <  norm minimization has been 

proposed to preserve edges in MR image reconstruction from highly undersampled 

data [29-33] and in image deconvolution [34,35]. For the 0  norm 
0

α  which 

counts the nonzero entries of N∈α  , a weighted 1  norm 
1

Λα  ( N N×∈Λ  ) with 

weights 
1

,i i i

−=Λ z  and ( ), 0i j i j= ≠Λ  mimick 0  norm when i i→z α  [36]. 

This implies that 0  norm 
0

α  could be viewed as penalizing small magnitude 

entries of α  while encouraging large magnitude entries in image reconstruction. 

Therefore, minimizing 0  norm minimization will further suppress the artifacts in 

smooth regions, shown in Fig. 1(f), which have been weakened in the wavelet 

domain.  

With the reasons stated above, we propose to apply original PBDW in 2D 

wavelet domain in CS-MRI in this paper. Hopefully, more artifacts will be removed in 

the undersampled image reconstruction. A shift-invariant discrete wavelets (SIDWT) 

based on wavelet frame as shown in Fig. 2, is adopted as 2D wavelets which enables 

fast computation [34] and outperforms orthogonal discrete wavelets in reconstructing 

MR images [18,22,38-40]. The PBDW in the SDIWT domain is denoted as PBDWS 
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in this paper. For the numerical algorithm solving non-convex optimization, a stable 

and fast numerical algorithm called mean doubly augmented Lagrangian (MDAL) 

[35], originally solving image deblurring problem, is modified to fit the proposed 

PBDWS for better MRI reconstruction. 

2. Methods 

2.1 L0 norm minimization for image reconstruction in PBDWS domain 

SIDWT is an undecimated wavelet transform since it avoids the subsampling in 

orthogonal wavelets [26]. Each subband of SIDWT has the same size of the original 

image. This property benefits analyzing the edges [40]. In addition, redundancy in 

SIDWT further improves the reconstruction quality [18,22,38-40]. Therefore, SIDWT 

is adopted as 2D wavelets to sparsify the image in the first step. 

In the proposed method, PBDW is performed on each subband of SIDWT as the 

second step. The flowchart of PBDWS is illustrated in Fig. 4.  

 

Fig. 4 Flowchart of patch-based directional wavelet in the SIDWT domain. 

 

The geometric direction jw  for the thj  patch in subbands of SIDWT is 

obtained by minimizing S-term approximation error to achieve the sparsity of 

coefficients [22,27,28] according to 

( )
,

2

, , , ,
2

arg min , ( )
j d

T T
j q j d j d j d jw S

θ
θ θ

∈
= −

θ
c Ψ P R Φ x               (1) 

where jR  is the operation dividing subbands of TΦ x  into patches. 

{ }1 2, , ,d Dθ θ θ θ=θ    is the set of candidate directions. ,j dθ  is the thd  candidate 

direction in the thj  patch. ( ),j dθP  is an operation re-arranging pixels according to 
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the direction ,j dθ . The notation ( ), , ,j d j d Sθc  denotes the S  largest wavelet 

coefficients of ( ),
T T

j d jθΨ P R Φ x . Estimated directions in one SIDWT subband are 

shown in Fig. 5. 

 

Fig. 5 Geometric directions trained in a SIDWT subband. 

 

When the geometric directions of patches are available, 1D Haar transform is 

performed on the SIDWT coefficients as follows: 

( )

( )

( )

1 11

T

T T
j j j

T
J J J

w

w

w

  
  
  
  = = =  
  
  
    

W

Ψ P Rα

z α Ψ P R Φ x B x

α Ψ P R



 

               (2) 

where 

( )

( )

( )

1 1
T

T T
j j

T
J J

w

w

w

 
 
 
 =  
 
 
  

W

Ψ P R

B Ψ P R Φ

Ψ P R





.   

In CS-MRI, the image is commonly reconstructed by minimizing 1  norm of 

transform coefficients. The 0  norm minimization can reconstruct the images with 

fewer measurements [29,30,31]. Therefore, in the PBDWS-based image 
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reconstruction we use minimizing the 0  norm of transform coefficients instead of 

1  norm minimization as follows: 

 
2

0 2
ˆ arg min

2

λ= +W Ux
x B x y F x-                       (3) 

where M N×= ∈UF UF   denotes the undersampled Fourier transform and y  denotes 

the acquired k-space data. The term 
0WB x  and 

2

2
- Uy F x  are used to enforce the 

sparsity of image x  and data consistency, respectively, while λ  balances sparsity 

and data consistency. 

2.2 Numerical algorithm 

    The 0  norm term in Eq.(3) is rewritten as follows:  

( )

( )

( )

( )

( )

( )

1 1 1 1 1

0

00 0

T T T

T T T T
j j j j j

T T T
JJ J J J

w w

w w

w w

     
     
     
     = = =     
     
     
        

W

Ψ P R Ψ P R Φ x α

B x Ψ P R Φ x Ψ P R Φ x α

αΨ P R Ψ P R Φ x

  

 
    (4) 

where jα  satisfies 

( )T T
j j jw=α Ψ P R Φ x .                    (5) 

Alternating direction minimization with augmented Lagrangian method is shown 

to be fast in solving the 1  norm minimization problems for CS-MRI [41,42]. An 

improved algorithm of alternating direction minimization, which is called mean 

doubly augmented Lagrangian (MDAL) [35], is extended into solving the 0  norm 

minimization problem and shown to be stable. Numerical simulations in [35] showed 

that the MDAL algorithm was superior to penalty decomposition [43] in terms of both 

efficiency and the quality of the restored image in deconvolution problems. In this 

paper, MDAL was extended into the proposed PBDWS-based MRI reconstruction.  

The MDAL of Eq. (3) is defined as 

2 2 22
22 0 2 2,

( , , , , ) min ,
2 2 2 2

L
λ μ γ γ= + + + + +U W Wx α

x α v x α F x - y α v B x -α B x -α x - x α -α   
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    (6) 

where μ  and γ  are two constants, v  is an intermediate variable in iteration, x  

and α  are the solution of x  and α  in last iteration, respectively. Eq. (6) is solved 

via iteratively solving three sub-problems 

221 2
22 2

22
2 2

1 1 1

min
2 2 2

min
2 2

( )

k k

k

p

k k k k

λ μ γ

μ γ

+

+ + +

 = + + +

 = + + +

 = + −


U Wx

Wα

W

x F x - y B x -α v x - x

α α B x -α v α -α

v v B x α

                  (7) 

until the solution converges. Here, we only discuss how to solve the first two 

sub-problems which is related to the proposed sparsifying transform PBDWS in 

CS-MRI. The third sub-problem can be easily solved [35] and is summarized in 

Algorithm 1. 

   The first sub-problem in Eq. (7) is solved according to the following normal 

equation 

( ) ( )

( ) ( )

1

1

1

-

J
T T T H k
j j j j

j

J
T T H k
j j j j

j

w w

w

μ λ γ

μ λ γ

+

=

=

 
+ + 

 

= + +





U U

U

R P ΨΨ P R F F x

R P Ψ α v F y x
            (8) 

which is simplified as 

( ) ( )11
,

k H H H kcμ λ γ μ λ γ
−+ = + + + +α vx F I U U I Fs U y Fx           (9) 

where ( ) ( ),
1

= -
J

T T
j j j j

j

w
=
α vs R P Ψ α v . 

The second sub-problem in Eq. (7) 

22
20 2

min
2 2

kμ γ= + + +Wα
α α B x -α v α -α             (10) 

is solved using hard thresholding 

( )1 1
, ,k k k kHμ γ

+ += +Wα B x v α                  (11) 

where ,Hμ γ  is defined as 
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( )( ),

2
0, if

,

, otherwise

i i

i
i i

p q

H p q
p q

μ γ

μ γ
μ γ μ γ

μ γ
μ γ

 + < + += 
+

 +

.              (12) 

The pseudo-code of the proposed method is summarized in algorithm 1. It is worth 

noting that MDAL takes  
0

1

1

kk j

jk =
=

+ x x  as output to ensure the convergence of 

the algorithm [35].  

 

Algorithm 1 Pseudocode for PBDWS-based CS-MRI reconstruction 

Initialization: 

Input acquired k-space data y , the geometric directions { }1, ,j J J
w w w=W    

for all the patches in SIDWT subbands, overlapping factor c  and the fast operator 

UF , the Haar wavelet Ψ , the SIDWT Φ , regularization parameter λ , and default 

parameters 1γ = , 410μ =  and tolerance of inner loop 35 10η −= × . The 

reconstructed image is initialized as H= Ux F y  and other variables are initialized 

as 0 0 00, 0, 0= = =v x α . 

Main: 

While 1k k η+ − ≤x x  is not satisfied, do 

(1) update x : ( ) ( )11
,

k H H H kcμ λ γ μ λ γ
−+ = + + + +α vx F I U U I Fs U y Fx ; 

(2) update α : ( )1 1
, ,k k k kHμ γ

+ += +Wα B x v α ; 

(3) update v : 1 1 1( )k k k k+ + += + −Wv v B x α ; 

(4) update 1 11 1

2 2
k k kk

k k
+ ++= +

+ +
x x x ; 

End  

Output: x  

3. Simulation results 

3.1  Simulation setup 
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3.1.1 Evaluation criteria 

The relative 2  norm error (RLNE), structural similarity (SSIM) index [44], and 

signal-to-noise ratio (SNR) [22] are adopted to evaluate the quality of reconstructed 

image. The expression of RNLE is 

( ) 2

2

ˆ
ˆRLNE

−
=

x x
x

x



                      (13) 

It is applied to measure the difference between the fully sampled image x  and the 

reconstructed image x̂ . Lower RLNE indicates the smaller difference between the 

reconstructed image and the fully sampled image. 

SSIM [44] evaluates local reconstruction errors by measuring the similarity 

between two images in a local window. This criterion has been widely used to 

measure the image quality when a reference image is available. In our case, the 

reference image is the fully sampled image. Definition of SSIM is as follows: For two 

local windows a  and b , whose size are G G× , the SSIM between them is 

1 2
2 2 2 2

1 2

(2 )(2 )

( )( )
a b ab

a b a b

C C
SSIM( , )=

C C

μ μ σ
μ μ σ σ

+ +
+ + + +

a b              (14) 

where aμ  is the average of a , bμ  is the average of b , 2
aσ  is the variance of  

a , 2
bσ  is the variance of b , abσ  is the covariance of a  and b , 1C  and 2C  are 

two variables to stabilize the division with weak denominator. Higher SSIM means 

the two windows are more similar to each other. Therefore, SSIM criteria 

corresponding to each central pixel is a useful way to display the local reconstruction 

errors.  

Displaying the SSIM for many images is not convenient. A mean SSIM (MSSIM) 

of the entire image is a common evaluation of overall image quality [44]. MSSIM is 

defined as 

1

i i
i=1

1
MSSIM( , ) SSIM( , )=

R
A B a b                   (15) 
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where A  and B  are the fully sampled and reconstructed images, respectively; ia  

and ib  are the image contents at the thi  local window, and R  is the number of 

total local windows. In our implementation, R  equals to the number of pixels of an 

image meaning that each pixel is the center of a local window. Higher MSSIM values 

indicate stronger detail preservation in reconstruction. 

3.1.2 Datasets and sampling patterns 

In simulation, variable Cartesian sampling patterns in Fig. 6 are adopted to 

undersample the k-space data.  

 
Fig. 6 Two Cartesian sampling patterns. (a) 35% k-space data are sampled; (b) 45% 
k-space data are sampled. 

 

Images used in simulation include T2 weighted brain images (Figs. 7(a)-(e)), a 

water phantom image (Fig. 7(f)) and a cardiac image (Fig. 7(g)). The brain images 

(size 256×256) shown in Figs. 7(a)-(e) are acquired from a healthy volunteer at a 3T 

Siemens Trio Tim MRI scanner using the T2-weighted turbo spin echo sequence 

(TR/TE=6100/99 ms, 220×220 mm field of view, 3 mm slice thickness). The water 

phantom image (size 256×256) shown in Fig. 7(f) is acquired at 7 T Varian MRI 

system (Varian, Palo Alto, CA, USA) with the spin echo sequence (TR/TE=2000/100 

ms, 80×80 mm field of view, 2 mm slice thickness). The cardiac image in Fig. 7(g) is 

downloaded from [45].  
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Fig. 7 Fully sampled images used in simulation. (a)-(e) T2 weighted brain images; (f) 
water phantom image; (g) cardiac image. 

 

3.2 Simulations on in vivo and phantom images 

  To demonstrate the performance of the proposed method, PBDWS with 0  norm 

minimization is compared with original PBDW with 1  norm minimization [22] and 

total variation with homotopic 0  norm minimization [30]. To estimate the 

geometric directions [22], we use SIDWT-based reconstructed image as a guide image. 

Regularization parameter λ  for PBDW and PBDWS is set as 610 . The 

regularization parameter is 510  for homotopic 0  norm minimization. All 

simulations are performed on an Intel Core 2 Duo CPU at 3.0 GHz and 2 GB memory. 

Reconstructed brain images using 35% of k-space data of Fig. 7(a) is shown in Fig. 

8. With 1  norm minimization, the original PBDW fails to remove the artifacts 

shown in Fig. 8(b). When we use 0  norm minimization, these artifacts are slightly 

better suppressed as shown in Fig. 8(c). Total variation with homotopic 0  norm 

minimization method successfully suppressed the artifacts but introduced stair-case 
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artifacts as shown in Fig. 8(d). Combing PBDWS with 0  norm minimization, the 

proposed method significantly suppresses the artifacts and preserves the edges in Fig. 

8(e).  

 
Fig. 8 Reconstructed brain images when 35% k-space data are sampled. (a) the fully 
sampled image; (b) and (c) are reconstructed images using PBDW with l1 norm and l0 
norm minimization, respectively; (d) reconstructed image using total variation with 
homotopic l0 norm minimization; (e) reconstructed images using PBDWS with l0 
norm minimization. 

 

SSIM criteria, measuring the local reconstruction errors and corresponding to each 

central pixel, is evaluated in Fig. 9. It shows that higher SSIM are achieved in most 

image regions using the proposed method than other methods. This implies that the 

reconstructed image using the proposed method is more consistent to the fully 

sampled image. 
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Fig. 9 SSIM metric corresponding to each central pixel. (e)-(g) are the SSIM 
corresponding to Figs. 8(b)-(e), respectively. 

 

Besides the visual inspection and local reconstruction errors evaluation, global 

reconstruction errors, RLNEs and MSSIMs are measured in Table 1, showing that the 

proposed PBDWS achieves the lowest RLNEs and highest MSSIMs among all the 

compared methods. This observation is consistent to criteria comparison in Table 2, 

which is evaluated on reconstruction of other four T2-weighted brain images when 

35% of k-space data are sampled.  

Table 1. Reconstruction errors for Fig. 8(a). 

Methods Images RLNE MSSIM 

PBDW+ l1 norm Fig. 8(b) 0.091 0.880 

PBDW+ l0 norm Fig. 8(c) 0.081 0.897 

Total variation + l0 norm Fig. 8(e) 0.112 0.807 

PBDWS+ l0 norm Fig. 8(d) 0.069 0.970 

 

Table 2. Reconstruction errors for Figs. 8(b)-(e).  

Methods 

Images 

Fig. 7(b) Fig. 7(c) Fig. 7(d) Fig. 7(e) 

RLNE MSSIM RLNE MSSIM RLNE MSSIM RLNE MSSIM

PBDW+l1 norm 0.104 0.920 0.104 0.921 0.095 0.920 0.052 0.732

PBDW+l0 norm 0.096 0.927 0.094 0.931 0.082 0.935 0.051 0.741

Total variation + l0 norm 0.130 0.909 0.136 0.890 0.112 0.911 0.059 0.710
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PBDWS+l0 norm 0.089 0.944 0.089 0.940 0.075 0.949 0.038 0.910

 

We also verify the performance of different methods using water phantom and 

cardiac images. The sampling patterns shown in Figs. 6(a) and (b) are used for water 

phantom and cardiac images, respectively. For the phantom data, the proposed method 

achieves the best resolution among all the methods as shown in Fig. 10.  

 
Fig. 10 Reconstructed water phantom images when 35% k-space data are sampled. (a) 
the fully sampled image; (b) and (c) are reconstructed images using PBDW with l1 
norm and l0 norm minimization, respectively; (d) reconstructed image using total 
variation with homotopic l0 norm minimization;(e) reconstructed images using 
PBDWS with l0 norm minimization. 

 

For the cardiac image shown in Fig. 11, most image features are obtained by the 

proposed method. The lowest reconstruction errors RLNEs and highest MSSIMs are 

achieved by the proposed method for the two datasets as shown in Table 3. 
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Fig. 11 Reconstructed cardiac images when 45% k-space data are sampled. (a) the 
fully sampled image; (b) and (c) are reconstructed images using PBDW with l1 norm 
and l0 norm minimization, respectively; (d) reconstructed image using total variation 
with homotopic l0 norm minimization; (e) reconstructed images using PBDWS with l0 
norm minimization; (f)-(j) are the difference images between fully sampled MR 
image and (a)-(e) . 

 

In summary, visual inspections in Figs. 8, 10, and 11 and reconstruction errors in 

Tables 1-3 demonstrate that PBDWS with 0  norm minimization outperforms other 

methods. 

Table 3. Reconstruction errors for Fig. 10 and Fig. 11 

Methods 

Images 

Fig. 10 Fig. 11 

RLNE MSSIM RLNE MSSIM 

PBDW+l1 norm 0.052 0.732 0.091 0.841 

PBDW+l0 norm 0.051 0.741 0.094 0.842 

Total variation + l0 norm 0.059 0.710 0.093 0.837 

PBDWS+l0 norm 0.038 0.910 0.082 0.920 

 

4 Discussion 

4.1 Different undersampling patterns 

Reconstruction errors for different undersampling patterns are evaluated in Fig. 12. 
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When the sampling rate is larger than 0.25 for radial sampling as shown in Fig. 12(e) 

and sampling rate is larger than 0.30 for the fully 2D random sampling as shown in 

Fig. 12(f), the PBDW cannot maintain the improvement over conventional CS-MRI 

methods, which is also observed in [25]. But the proposed method overcomes this 

limitation successfully. Consistent improvement using the proposed method over 

traditional CS-MRI methods is observed in Fig. 12 when the RLNE is larger than 0.05. 

These observations imply that the proposed method is robust to sampling patterns.  

 

 
Fig. 12  Reconstruction errors under different sampling patterns. (a)-(c) are Cartesian, 
radial and 2D undersampling patterns; (d)-(f) are reconstruction errors corresponding 
to undersampling patterns in (a)-(c), respectively. 

 

4.2  Handling noise-added data 

To demonstrate the performance with additive noise using the proposed method, a 

Gaussian white noise with variance 2 0.20σ =  was added into real and imaginary 

parts of original k-space data, respectively. We employed Cartesian sampling shown 

in Fig. 6(b) to acquire 45% of the full data. In simulation, while maintaining 
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SNR 15≥  in the reconstructed images, the choice of regularization parameters for 

different methods is optimized to suppress most of the noise as well as achieve the 

lowest RLNEs.  

The regularization parameter λ  is set as 35 10×  for PBDW with 1  norm 

minimization, 29 10λ = ×  for the proposed PBDWS with 0  norm minimization, 

and the regularization parameter is 110−  for homotopic 0  norm minimization. For 

the noise-added image in Fig. 13(b), better noise suppressing and sharper textures or 

edges are achieved using the proposed method (Fig. 13(e)) than using other methods 

(Figs. 13(c) and (d)). The proposed method obtained the lowest RLNEs and highest 

SNRs as shown in Table 4. These results demonstrate that the proposed method has 

advantages in preserving the textures or edges for the data with noise.  

 

 
Fig. 13 Comparison on reconstructed images for noise-added data. (a) and (b) are 
fully sampled image without and with added noise, respectively; (c) reconstructed 
image using PBDW with l1 norm minimization; (d) reconstructed image using total 
variation with homotopic l0 norm minimization; (e) reconstructed images using 
PBDWS with l0 norm minimization. 
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Table 4. Reconstruction errors for noise-added data. 

Methods Images RLNE MSSIM SNR 

Noise added image Fig. 10(b) 0.095 0.800 10.9 

PBDW + l1 norm Fig. 10(c) 0.113 0.882 30.6 

Total variation+ l0 norm Fig. 10(d) 0.124 0.871 25.5 

PBDWS + l0 norm Fig. 10(e) 0.087 0.960 35.3 

 

4.3  Decomposition scales 

The optimal decomposition scales of SIDWT are tested. Fig. 14 shows that the 

reconstruction error increases as the number of decomposition scales grows. The 

lowest reconstruction error is obtained when decomposition scale is 1. The reason 

may be that one scale SIDWT filters out the aliasing artifacts introduced by 

undersampling. However, further increasing the scales results in smoother edges that 

does not help finding the geometric direction and improving the sparsity in PBDW. 

 

 

Fig. 14 Reconstruction errors versus decomposition scale of SIDWT. 

 

4.4  Overlap factor 

Overlap factor is chosen as 4 to tradeoff between computation and reconstruction 

error. Theoretically, the computational complexity of one forward/inverse PBDWS is 
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proportional to the overlap factor c . Computation time is tested under different 

overlap factors. As shown in Fig. 15, RLNEs decrease as overlap factor grows. When 

overlap factor is larger than 4, RLNE decreases slowly. Reduction of RLNE is at the 

cost of longer computation time. This suggests that overlap factor 4 is optimal in our 

simulation.  

 

Fig. 15 Computation time and reconstruction errors versus overlap factor. 

 

4.5  Convergence of the algorithm 

The convergence of the proposed method is empirically tested. Fig. 7(a) is used 

for the experiment. The reference [35] suggests to test the convergence of MDAL by 

plotting the evolution of  
1

2

2

k k −−x x
z

 where kx  and 1k −x  are reconstructed image, 

and z  is the zero filling undersampled magnetic resonance image. The cure in Fig. 

16(a) shows that 
1

2

2

k k −−x x
z

 decreases with iterations. As the iterations increased, 

the solution progressively approaches the fully sampled as shown in Fig. 16(b). The 

objective function decreases and gradually stabilizes when the computation time 

increases as shown in Fig. 16(c). These observations indicate that MDAL 

convergences in the proposed method. 
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Fig. 16 Empirical convergence of the MDAL algorithm. (a) The decay curve of 
increments of reconstructed images in iterations; (b) reconstruction errors in iterations; 
(c) objective function versus computation time. 

 

4.6  Computation time 

Once geometric directions were estimated from a guide image, the computational 

complexity of PBDW is ( )O cN , which is proportional to the overlap factor c  of 

PBDW and the number of pixels N  in one image [22]. The computational 

complexity of PBDWS is ( )O c M′  where c′  is the overlap factor of PBDWS and 

M  is the number of wavelet coefficients in all SIDWT subbands. In typical setting of 

the proposed method,  
1

4
c c′ =  and 4M N= . Therefore, the PBDWS has the same 

computational complexity of PBDW with typical overlap factor 16 [28]. The 

computation time of these methods is summarized in Table 5, which shows that the 

proposed method can reach lower RLNEs with nearly the same time of PBDW and 

this time is about 4 times that of conventional SIDWT-based reconstruction. 

 

Table 5. Computation time of different reconstruction methods (unit: seconds). 

Methods 
Images 

Fig. 7(b) Fig. 7(c) Fig. 7(d) Fig. 7(e) 

PBDW + l1 norm 351 397 371 373 

PBDWS + l0 norm 358 390 393 337 

Total variation + l0 norm 379 385 373 382 

Note: All the methods are carried out until their RLNEs stabilize. The CPU time is averaged by 

repeating the same simulation 5 times. 



 24 / 28 
 

 

4.7 Regularization parameters 

How to choose the regularization parameters is discussed in this section. 

Following the principle of maximum likelihood estimation (MLE) [42], regularization 

parameter λ  should be proportional to the inverse of noise variance 2σ . If the data 

is free of noise, λ  should be as large as possible. In our cases, 610λ =  is large 

enough to achieve the optimal reconstruction for all the used imaging data without 

additive noise.  

For the noise-added data, regularization parameter λ  is crucial to minimize 

reconstruction errors and maintaining SNRs. From the aspect of MLE [42], a smaller 

λ  penalizes the noise more heavily. The effect of λ  values on reconstruction is 

studied in Fig. 17. It shows that a small λ  ( 25 10× ) results in over-smoothed image 

while a large λ  ( 35 10λ > × ) will introduce residual noise in image. Among the 

values we tested in this experiment, λ  between 2 35 10 ,5 10 × ×   appears to be 

optimal as suggested with nicely low reconstruction errors and high SNRs. 
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Fig. 17  Effect of regularization parameter λ  for reconstruction of brain image with 
added noise using the proposed method. (a) The RLNEs and SNRs against the 
regularization parameter λ  when 45% k-space data are sampled; (b)-(c) are 

reconstructed images with 200,900,5000λ =  respectively.  

 

5 Conclusions 

In this work, performance of PBDW-based undersampled magnetic resonance 

image reconstruction is improved by minimizing the 0  norm of transform 

coefficients and extending PBDW into 2D shift-invariant discrete wavelets domain. 

Image edges are better preserved and the artifacts are better removed than the original 

PBDW with 1  norm minimization. The proposed method is observed to be robust to 

sampling patterns. A mean doubly augmented Lagrangian algorithm makes the 

solution progressively approach the fully sampled image in iterations. Our future 

work is combing the proposed method with spread spectrum MRI [46,47], which may 

reduce the coherence between sampling matrix and sparsifying transform leading to 
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potential reduction of reconstruction errors. In addition, applying other adaptive 

sparsifying transforms [48,49] and combining them with PBDWS in MR image 

reconstruction is worthy investigating. 

 

Acknowledgments 

The authors thank Dr. Bingwen Zheng for valuable suggestions. The authors also 

sincerely thank Drs. Michael Lustig, Joshua Trzasko, Gabriel Peyre, Junfeng Yang, 

Yin Zhang, Wotao Yin, Jong Chul Ye and Richard Baraniuk for sharing their codes 

and/or data. This work was partially supported by NNSF of China (61201045, 

11174239 and 10974164), Fundamental Research Funds for the Central Universities 

(No. 2013SH002), Open Fund from Key Lab of Digital Signal and Image Processing 

of Guangdong Province (54600321) and Scientific Research Foundation for the 

Introduction of Talent at Xiamen University of Technology (90030606). 

 

References 
[1] Hu YL, Glover GH. Increasing spatial coverage for high-resolution functional MRI. Magn  

Reson Med 2009; 61: 716-722. 

[2] Yang RK, Roth CG, Ward RJ, deJesus JO, Mitchell DG. Optimizing abdominal MR imaging: 

Approaches to common problems. Radiographics 2010; 30: 185-199. 

[3] Finn JP, Nael K, Deshpande V, Ratib O, Laub G. Cardiac MR imaging: State of the technology. 

Radiology 2006; 241: 338-354. 

[4] Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid 

MR imaging. Magn Reson Med 2007; 58: 1182-1195. 

[5] Ye JC, Tak S, Han Y, Park HW. Projection reconstruction MR imaging using FOCUSS. Magn 

Reson Med 2007; 57: 764-775. 

[6] Block KT, Uecker M, Frahm J. Undersampled radial MRI with multiple coils. Iterative image 

reconstruction using a total variation constraint. Magn Reson Med 2007; 57: 1086-1098. 

[7] Miao J, Guo W, Narayan S, Wilson DL. A simple application of compressed sensing to further 

accelerate partially parallel imaging. Magn Reson Med 2013; 31: 75-85. 

[8] Fang S, Ying K, Zhao L, Cheng JP. Coherence regularization for SENSE reconstruction with a 

nonlocal operator (CORNOL). Magn Reson Med 2010; 64: 1414-1426. 

[9] Gamper U, Boesiger P, Kozerke S. Compressed sensing in dynamic MRI. Magn Reson Med 

2008; 59: 365-373. 

[10] Lingala SG, Yue H, Dibella E, Jacob M. Accelerated dynamic MRI exploiting sparsity and 

low-rank structure: k-t SLR. IEEE Trans Med Imaging 2011; 30: 1042-1054. 

[11] Zhao B, Haldar JP, Christodoulou AG, Liang ZP. Image reconstruction from highly 



 27 / 28 
 

undersampled (k,t)-space data with joint partial separability and sparsity constraints. IEEE 

Trans Med Imaging 2012; 31: 1809-1820. 

[12] Liang D, DiBella EVR, Chen RR, Ying L. k-t ISD: Dynamic cardiac MR imaging using 

compressed sensing with iterative support detection. Magn Reson Med 2012; 68: 41-53. 

[13] Xie G, Feng X, Christodoulou AG, Weng D, Liu X, Qiu B. High resolution dynamic cardiac 

MRI using partial separability of spatiotemporal signals with a novel sampling scheme. Magn 

Reson Imaging 2012;31:529-537. 

[14] Doneva M, Bornert P, Eggers H, Stehning C, Senegas J, Mertins A. Compressed sensing 

reconstruction for magnetic resonance parameter mapping. Magn Reson Med 2010; 64: 

1114-1120. 

[15] MacDonald ME, Stafford RB, Yerly J, Andersen LB, McCreary CR, Frayne R. Accelerated 

passive MR catheter tracking into the carotid artery of canines. Magn Reson Imaging 2013; 31: 

120-129. 

[16] Qu X, Zhang W, Guo D, Cai C, Cai S, Chen Z. Iterative thresholding compressed sensing MRI 

based on contourlet transform. Inverse Probl Sci En 2010; 18: 737-758. 

[17] Kim DH, Gho SM, Nam Y, Zho SY, Kim EY. Three dimension double inversion recovery gray 

matter imaging using compressed sensing. Magn Reson Imaging 2010; 28: 1395-1402. 

[18] Guerquin-Kern M, Haeberlin M, Pruessmann KP, Unser M. A fast wavelet-based 

reconstruction method for magnetic resonance imaging. IEEE Trans Med Imaging 2011; 30: 

1649-1660. 

[19] DiBella EVR, Chen LY, Schabel MC. Reconstruction of dynamic contrast enhanced magnetic 

resonance imaging of the breast with temporal constraints. Magn Reson Imaging 2010; 28: 

637-645. 

[20] Ravishankar S, Bresler Y. MR image reconstruction from highly undersampled k-space data by 

dictionary learning. IEEE Trans Med Imaging 2011; 30: 1028-1041. 

[21]    Liu Q, Wang S, Yang K, Luo J, Zhu Y, Liang D. Highly undersampled magnetic resonance 

image reconstruction using two-level Bregman method with dictionary updating, IEEE Trans 

Med Imaging 2013; 32: 1290-1301. 

[22] Qu X, Guo D, Ning B, Hou Y, Lin Y, Cai S, Chen Z. Undersampled MRI reconstruction with 

patch-based directional wavelets. Magn Reson Imaging 2012; 30: 964-977. 

[23] Du H, Lam F. Compressed sensing MR image reconstruction using a motion-compensated 

reference. Magn Reson Imaging 2012; 30: 954-963. 

[24] Chen Y, Hager W, Huang F, Phan D, Ye X, Yin W. Fast algorithms for image reconstruction 

with application to partially parallel MR imaging. SIAM J Imaging Sci 2012; 5: 90-118. 

[25] Lin Q, Guo W, Fu X, Ding X, Huang Y. MR image reconstruction by patch-based sparse 

representation. Journal of Theoretical and Applied Information Technology 2013; 49: 107-112. 

[26] Mallat S: A wavelet tour of signal processing, Academic Press, San Diego, 1998. 

[27] Peyre G, Mallat S. Surface compression with geometric bandelets. ACM Trans Graphic 2005; 

24: 601-608. 

[28] Le Pennec E, Mallat S. Sparse geometric image representations with bandelets. IEEE Trans 

Image Process 2005; 14: 423-438. 

[29] Chartrand R, Fast algorithms for nonconvex compressive sensing: MRI reconstruction from 

very few data, in: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to 

Macro-ISBI’09, Boston, MA, USA:IEEE Computer Society; 2009. p. 262-265. 



 28 / 28 
 

[30] Trzasko J, Manduca A. Highly undersampled magnetic resonance image reconstruction via 

homotopic l0-minimization. IEEE Trans Med Imaging 2009; 28: 106-121. 

[31]    Qu X, Cao X, Guo D, Hu C, Chen Z. Compressed sensing MRI with combined sparsifying 

transforms and smoothed l0 norm minimization, in the 35th International Conference on 

Acoustics, Speech, and Signal Processing-ICASSP'10, Dallas, Texas, USA: IEEE; 2010. 

p.626-629.  

[32] Majumdar A, Ward RK. An algorithm for sparse MRI reconstruction by Schatten p-norm 

minimization. Magn Reson Imaging 2011; 29: 408-417. 

[33] Majumdar A, Ward RK, Aboulnasr T. Non-convex algorithm for sparse and low-rank recovery: 

Application to dynamic MRI reconstruction. Magn Reson Imaging 2013; 31: 448-455. 

[34] Cao W, Sun J, Xu Z. Fast image deconvolution using closed-form thresholding formulas of 

regularization. J Vis Commun Image R 2013; 24: 31-41. 

[35] Dong B, Zhang Y. An efficient algorithm for l0 minimization in wavelet frame based image 

restoration. J Sci Comput 2013; 54: 350-368. 

[36] Candès E, Wakin M, Boyd S. Enhancing sparsity by reweighted l1 minimization. J Fourier 

Anal App 2008; 14: 877-905. 

[37] Baraniuk R, Choi H, Neelamani R, Ribeiro V, Romberg J, Guo H, Fernandes F, Hendricks B, 

Gopinath R, Lang M, Odegard JE, Wei D, Rice wavelet toolbox, 2009. 

[38] Baker CA, King K, Liang D, Ying L. Translational-invariant dictionaries for compressed 

sensing in magnetic resonance imaging. in: 8th IEEE International Symposium on Biomedical 

Imaging-ISBI'11. Chicago, USA:IEEE; 2011.p. 1602-1605. 

[39] Vasanawala S, Murphy M, Alley M, Lai P, Keutzer K, Pauly J, Lustig M. Practical parallel 

imaging compressed sensing MRI: Summary of two years of experience in accelerating body 

MRI of pediatric patients. in: 8th IEEE International Symposium on Biomedical 

Imaging-ISBI'11. Chicago, USA: IEEE; 2011. p. 1039-1043. 

[40] Hu C, Qu X, Guo D, Bao L, Chen Z. Wavelet-based edge correlation incorporated iterative 

reconstruction for undersampled MRI. Magn Reson Imaging 2011; 29: 907-915. 

[41] Yang J, Zhang Y, Yin W. A fast alternating direction method for TV l1-l2 signal reconstruction 

from partial fourier data. IEEE J Sel Topics Signal Process 2010; 4: 288-297. 

[42] Chen Y, Ye X, Huang F. A novel method and fast algorithm for MR image reconstruction with 

significantly under-sampled data. Inverse Probl Imag 2010; 4: 223-240. 

[43] Zhang Y, Dong B, Lu Z. l0 minimization for wavelet frame based image restoration. Math 

Comput 2013; 82:995-1015. 

[44] Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: From error 

visibility to structural similarity. IEEE Trans Image Process 2004; 13: 600-612. 

[45] Bio Imaging Signal Processing Lab [Online]. Available: http://bisp.kaist.ac.kr/ktFOCUSS.htm. 

[46] Puy G, Marques JP, Gruetter R, Thiran J, Van De Ville D, Vandergheynst P, Wiaux Y. Spread 

spectrum magnetic resonance imaging. IEEE Trans Med Imaging 2012; 31: 586-598. 

[47]    Qu X, Chen Y, Zhuang Y, Yan Z, Guo D, Chen Z. Spread spectrum compressed sensing MRI 

using chirp radio frequency pulses, 2013, http://arxiv.org/abs/1301.5451. 

[48]    Jacques L, Duval L, Chaux C, Peyre G. A panorama on multiscale geometric representations, 

intertwining spatial, directional and frequency selectivity, Signal Process 2011; 91: 2699-2730. 

[49]    Peyre G. A review of adaptive image representations, IEEE J Sel Topics Signal Process 2011; 

5: 896-911. 




