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This paper proposes to use contourlet as a sparse transform and combine
it with fast iterative shrinkage/threshold algorithm (FISTA) for
compressed sensing magnetic resonance imaging (CS-MRI)
reconstruction. The proposed method not only inherits the simplicity
and effectiveness of the original FISTA but also owns the sparse curve
representation ability of contourlet. Simulation results validate the
superior performance of the proposed method in terms of reconstruction
accuracy and computation time.

Introduction: Computation efficiency and image accuracy are two
fundamental goals in the image processing in general and in the
reconstruction of compressed sensing MRI specifically. The fast
iterative shrinkage/threshold algorithm (FISTA) is widely used in recent
years for linear inverse problems including image denoising [1,2],
image deblurring [1,2], compressed sensing (CS) MRI reconstruction
[3,4] and CS remote sensing imaging [5]. The FISTA is an efficient
algorithm has a faster convergence speed than some traditional methods
such as iterative shrinkage/threshold algorithm (ISTA) and two-step
ISTA (TWISTA) [6]. Meanwhile, the FISTA is able to obtain better
results in terms of accuracies than these methods when applied to
simple regularization problems such as image denoising and deblurring
[1-2] than traditional iterative threshold algorithms [1-2]. When FISTA
and composite splitting techniques [3] are combined, they can be used
to solve the composite total variance (TV) and wavelet sparsity
regularization problems such as the reconstruction of compressed
sensing MRI [3]. Nevertheless, TV may result in loss of texture [7], and
wavelet may fail to represent image curves though it can enforce point
singularities and isotropic features of images [4-5]. Curvelet, on the
other hand, outperforms wavelet in representing curve-like features of
images and was used to replace wavelet sparse transformation in the
native FISTA to improve the effectiveness of remote sensing imaging
reconstruction [5]. A clear drawback of curvelet sparse transform is the
long computation time due to its high redundancy. Contourlet, another
image geometric transform akin to curvelet, has much less redundancy
but with efficient sparse representation of curves and has been,
therefore, utilized for CS-MRI in [4]. Although the use of contourlet in
[4] is simple and effective, the iterative threshold reconstruction
algorithm in [4] is slow. This letter proposes to use contourlet as sparse
transform of FISTA for CS-MRI, aiming to improve the quality of
reconstructed image and computation efficiency.

Theory: The CS-MRI reconstruction problem in this letter can be
formulated as
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where x is the underlying MR image to be reconstructed, R is the partial
Fourier transform, b is the undersampled measurement of k-space data,
@ is the contourlet transform, and « is a trade-off parameter to tune data
fidelity term and sparsity regularization term in (1).

The proposed fast iterative contourlet thresholding algorithm (dubbed
as FICOTA) is outlined in algorithm 1 and is utilized to solve (1).
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Pixel values of image are normalized to the range [/, u] via project
function, where u>/>0 . Otherwise, the reconstructed image will
have artifacts because of the appearance of the negative pixel values
after sparsity transformation.
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Results: Fast composite splitting algorithm (FCSA) [3], contourlet
based iterative thresholding method [4], and two FISTA-based methods
using wavelet and curvelet regularization terms [2, 5], respectively, are
utilized to compare the performance of FICOTA. The conventional four
methods are simply described as FCSA, ICOTA, FIWTA and FICTA,
respectively. For fair comparison, the coefficients normalizing process
is also added to other methods. All algorithms are coded using Matlab
2009b on Dell PC T1500.

dl ICOTA el FICTA /1 FICOTA
Shoulder

d2 ICOTA e2 FICTA

/2 FICOTA
Fig . 1 The original and reconstructed images:

al,a2 The original MR images.

b1-f1 Reconstructed Brain images of different algorithms.
b2-f2 Reconstructed Shoulder images of different algorithms.

Two MR images, Brain and Shoulder, are presented in Fig. 1 (al &
a2) and used in the experiments. For convenience, the MR images were
resized to the same size 256*256 and the sampling ratio is set to be
approximately 20%. We used the Daubechies wavelet with two
decomposition levels for FIWTA, the wrapping version of the second
generation curvelet [8] for FICTA, and the redundant sharp frequency
localization contourlet (SFLCT) [9] with 2°, 2%, 2°, 2% 2' directional
subbands from coarse to fine scales for ICOTA and FICOTA. Gaussian
white noise with standard deviation 0.01 was added to the k-space



measurements b. The regulation parameter o was assigned with value
0.075, and maximum iteration number of each algorithm is set as 50.
The tolerance of the residue parameter of ICOTA was set as le-3.

To compare the performance of different algorithms, some objective
criteria including signal-to-noise ratio (SNR), peak signal-to-noise ratio
(PSNR) [4], transferred edge information (TEI) [4], and L2 norm error
are also adopted.

Fig. 1 shows the reconstructed images using different algorithms.
According to Fig. 1, FICOTA, ICOTA and FICTA are more effective in
suppressing noise and representing edges when compared with FIWTA
and FCSA.

Table 1-2 summarize the comparisons of different algorithms based
on the objective criteria. The proposed FICOTA outperforms FCSA and
FIWTA in term of these criteria, although its running time is slower
than them. Additionally, FICTA and ICOTA can acquire comparable
reconstruction quality as FICOTA, but their computation time costs are
higher than the proposed FICOTA.

Table 1: Comparisons of different algorithms based on Brain.

Brain FCSA | FIWTA | ICOTA | FICTA | FICOTA
SNR 19.80 | 18.62 22.10 22.16 22.51
PSNR 31.73 | 30.56 34.08 34.09 34.44
TEI 0.809 | 0.792 0.851 0.858 0.865
L2 Norm Error | 0.070 | 0.080 0.054 0.053 0.051
CPU Time(s) 2.48 1.56 39.41 72.39 12.11

Table 2: Comparisons of different algorithms based on Shoulder.

Shoulder FCSA | FIWTA | ICOTA | FICTA | FICOTA
SNR 21.58 | 21.47 24.45 23.51 24.75
PSNR 40.38 | 40.28 43.29 42.31 43.55
TEI 0.691 | 0.692 0.753 0.751 0.769
L2Error 0.064 | 0.065 0.046 0.051 0.044
CPU Time(s) | 2.31 1.78 20.56 67.86 12.66

Conclusion: This letter proposes to combine FISTA with contourlet
transform to enforce the curve sparsity of magnetic resonance images
with fast computation. Experimental results show that the proposed
method, FICOTA, significantly improves the quality of reconstructed
images, with slightly compromised computation time compared to
FISTA-based methods with wavelet regularization constraints.
Compared to FICTA and ICOTA, FICOTA can reach comparable
reconstruction effectiveness but use much less computation time. Future
work may combine the more efficient FISTA-based methods and the
more sparse transforms to improve the effectiveness and the efficiency
of compressed sensing MRI.
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