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measurements b. The regulation parameter α was assigned with value 
0.075, and maximum iteration number of each algorithm is set as 50. 
The tolerance of the residue parameter of ICOTA was set as 1e-3.  

To compare the performance of different algorithms, some objective 
criteria including signal-to-noise ratio (SNR), peak signal-to-noise ratio 
(PSNR) [4], transferred edge information (TEI) [4], and L2 norm error 
are also adopted.  

Fig. 1 shows the reconstructed images using different algorithms. 
According to Fig. 1, FICOTA, ICOTA and FICTA are more effective in 
suppressing noise and representing edges when compared with FIWTA 
and FCSA. 

Table 1-2 summarize the comparisons of different algorithms based 
on the objective criteria. The proposed FICOTA outperforms FCSA and 
FIWTA in term of these criteria, although its running time is slower 
than them. Additionally, FICTA and ICOTA can acquire comparable 
reconstruction quality as FICOTA, but their computation time costs are 
higher than the proposed FICOTA. 

 

Table 1: Comparisons of different algorithms based on Brain. 

Brain FCSA FIWTA ICOTA FICTA FICOTA

SNR 19.80 18.62 22.10 22.16 22.51 

PSNR 31.73 30.56 34.08 34.09 34.44 

TEI 0.809 0.792 0.851 0.858 0.865 

L2 Norm Error 0.070 0.080 0.054 0.053 0.051 

CPU Time(s) 2.48 1.56 39.41 72.39 12.11 

 

Table 2: Comparisons of different algorithms based on Shoulder. 

Shoulder FCSA FIWTA ICOTA FICTA FICOTA

SNR 21.58 21.47 24.45 23.51 24.75 

PSNR 40.38 40.28 43.29 42.31 43.55 

TEI 0.691 0.692 0.753 0.751 0.769 

L2Error 0.064 0.065 0.046 0.051 0.044 

CPU Time(s) 2.31 1.78 20.56 67.86 12.66 

 
Conclusion: This letter proposes to combine FISTA with contourlet 
transform to enforce the curve sparsity of magnetic resonance images 
with fast computation. Experimental results show that the proposed 
method, FICOTA, significantly improves the quality of reconstructed 
images, with slightly compromised computation time compared to 
FISTA-based methods with wavelet regularization constraints. 
Compared to FICTA and ICOTA, FICOTA can reach comparable 
reconstruction effectiveness but use much less computation time. Future 
work may combine the more efficient FISTA-based methods and the 
more sparse transforms to improve the effectiveness and the efficiency 
of compressed sensing MRI. 
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