
 

Fig. 3 Zoom-in reconstructed regions 
labeled in Fig. 2 (a). (a)-(f) are fully 
sampled image, zero-filling image, 
reconstructions by FISTA, RWL1, ECIA, 
and the proposed method, respectively. The 
RLNEs for (b)-(f) are 0.247, 0.096, 0.092, 
0.084, and 0.066 to the fully sampled image.
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Introduction 

In MRI, significant aliasing artifacts are introduced when the k-space is highly undersampled, which blur the reconstructed edges. The 
edges usually contain useful morphological information for the diagnosis of focal areas, such as the margin of the tumor, and the caliber of the 
vessel. Therefore, undersampled MRI reconstruction with good edge recovery is important for clinical diagnosis. In this work, we define a 
weighting matrix from an edge scoring function to obtain better edge recovery. The edge scoring function is designed by considering the 
strength, orientation, and spatial continuity of the edge features in local patches in à trous wavelet domain. Simulations indicate that the 
proposed method yields reconstructions with better edge recovery than conventional compressed sensing methods, and requires fewer k-space 
measurements to achieve reconstruction error of the same level. 

Methods 

The reconstruction formulation for the proposed method is 2
12min  / 2u λ− +

α
y F Ψα Wα , where Ψ  is the 

sparsifying transform (à trous wavelet in this work), y  is measured k-space data, α  is the sparse representation of 
a 1N ×  signal x  ( =x Ψα ) produced by vectorizing the magnetic resonance image. uF  represents undersampled 
Fourier transform, λ  is a regularization parameter governing the tradeoff between the data consistency and sparsity. 
W  is a weighting matrix generated from the edge scoring function ( )f ⋅  by 1 / ( )f= ⋅W . ( )f ⋅  is designed by 

combining two components ( ) ( ) ( )f I C⋅ = ⋅ ⋅ ⋅ , where the first component 2 2(( , ), ) (cos( ) 1)
i i i ii iI x y x yα α α αθ θΔ = + ⋅ Δ +  is 

used to quantify the contribution of wavelet coefficient iα  to the edge features in the local patch, while the second 

component 2 2(( , ),( , )) ( ) ( )
i i i ipat pat pat patC x y x y x x y yα α α α= − + −  is used to measure the spatial continuity of edge 

features passing through iα . ( , )
i i

x yα α  and ( , )pat patx y  are two vectors defined based on the strenth and orientation 
of the edge in a local patch, and iθΔ  is the angle between ( , )

i i
x yα α  and ( , )pat patx y . The strength and orientation of 

the edge is defined as follows. Suppose a square-shaped window centered at wavelet coefficient iα  is divided into two 
sub-windows by a line with angle iθ  ( 0 iθ π≤ < ), as shown in Fig. 1. Let the sum of the coefficients in the two 
sub-windows be Ad  and Bd . The edge strength 

i
dα , which reflects the intensity transition of wavelet coefficients 

along the edge, is defined by the maximal difference between Ad  and Bd  as iθ  changes, and the angle iθ  is 
defined as the directional orientation of the edge at iα . Then ( , )
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= ∑ , where P  denotes the local patch. 

Results and discussion 

The MR image used for simulations is T2 weighted and obtained from a 1.5T GE MRI scanner, as shown in Fig. 2 
(a). À trous WT with spline biorthogonal filters and four decomposition levels is used as the sparsifying transform. 
Cartesian sampling pattern [1] with 30% measurements are acquired, as shown in Fig. 2 (b).  Relative 2l  norm error 
(RLNE) is adopted to evaluate the normalized error presented in the reconstruction compared with the fully sampled 
MR image. The proposed algorithm is compared with the fast iterative soft-thresholding algorithm (FISTA) [2], 
reweighted 1l  norm (RWL1) minimization algorithm [3], and edge correlation incorporated algorithm (ECIA) [4]. 
The comparison is given in Fig. 3. We can observe that edges obtained by the proposed method are much clearer than 

the other three methods. The proposed method also yields lowest RLNE among the four methods. In addition, to test 
the performance of different methods under different sampling rates, we give the curve of RLNE versus sampling rate 
in Fig. 4. The image used in this trial is the same as Fig. 2 (a), with Cartesian sampling scheme employed. The curves 
in Fig. 4 indicates that, when the acquired k-space data grows to 25%-35%, the RLNEs for the proposed method fall 
between 0.04-0.07, under which we think reconstruction quality is relatively acceptable. However, RWL1 and ECIA 
achieve RLNEs of the same level with nearly 35%-40% k-space measurements. 
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Fig. 1 The strength and
orientation of the edge. 

Fig. 2 T2 weighted MR image (a) and
Cartesian sampling pattern with 30% k-space 
data acquired (b). 
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Fig. 4 RLNE curves obtained by different
methods with different sampling rates
using the Cartesian sampling scheme. 

2270Proc. Intl. Soc. Mag. Reson. Med. 20 (2012)


