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 
Abstract—Estimating missing sample values is an inherent 

problem in sensor network applications. In wireless sensor 
networks, due to power outrage at a sensor node, hardware 
dysfunction, or bad environmental conditions, not all sensor 
samples can be successfully gathered at the sink. Additionally, in 
the context of data streams, some nodes may continually miss 
samples for a period of time. To address these issues, a 
sparsity-based online data recovery approach is proposed in this 
paper. First, we construct an overcomplete dictionary composed 
of past data frames and traditional fixed transform bases. 
Assuming the current frame can be sparsely represented using 
only a few elements of the dictionary, missing samples in each 
frame can be estimated by Basis Pursuit. If some delay is 
acceptable, the estimation of the current frame can be further 
improved by leveraging the observation from the next frames. 
Our method was tested on data from a real sensor network 
application: monitoring the temperatures of the disk drive racks 
at a data center. Simulations show that in terms of estimation 
accuracy and stability, the proposed approach outperforms 
existing average-based interpolation methods, and is more robust 
to burst missing along the time dimension. 
 

Index Terms—Sparsity, data recovery, sensor, dictionary. 
 

I. INTRODUCTION 

IRELESS Sensor Networks (WSN) are characterized by 
a dense deployment of sensor nodes that continuously 

observe a physical phenomenon, such as environmental sensing 
[1], habitat monitoring [2] and other emergency cases [3]. Here, 
we focus on the many-to-one architecture where distributed 
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sensors collaboratively relay their data to a single sink (base 
station). 

Some transmitted sensor data may be lost or corrupted due to 
many reasons, such as power outrage at a sensor node, 
hardware dysfunction, and bad environmental conditions. 
Many real-time applications, such as traffic and safety control 
[4], and healthcare [5] need to operate on continuous data 
streams. In this paper, we consider a 2-D (two dimensional) 
data stream scenario, and the missing data of each 2-D frame 
need to be estimated at the sink online with low time delay.  Fig. 
1 shows a sensor network with missing samples in time 
intervals n-1, n, and n+1, respectively. 

 

 
Fig. 1.  A sensor network with missing samples.  
 

To obtain the lost data, simply retransmitting these data 
could cause a long delay, consume power of the node [6], and 
take away valuable communication bandwidth. Furthermore, 
when there is a hardware failure at a sensor node, retransmitting 
is not an option. A more desirable approach is to perform all the 
necessary data recovery functions at the sink, since the sink 
usually has much relaxed power and computing constraints 
than the sensors have.  
    To estimate the missing data, typically, a model of the 
characteristics of the sensor data is needed, and the missing 
data are interpolated using spatial and temporal correlations 
among the sensor readings [7-9]. Examples of spatial 
interpolations include Inverse Distance Weighted Averaging 
(IDWA) [8] and Kriging [9]. However, they only consider data 
within a single frame, and do not take advantage of information 
in the sequential data frames. Others take temporal factors into 
consideration. For instance, the work in [10] is restricted to 
Markov models, where given the samples at time interval n, the 
samples at time interval n+1 are independent of those for any 
time earlier than n. This assumption is too restrictive.  

Recently, as a new powerful tool for statistical signal 

Sparsity-based Online Missing Data Recovery 
Using Overcomplete Dictionary 

Di Guo, Zicheng Liu, Xiaobo Qu, Lianfen Huang, Yan Yao, Ming-Ting Sun 

W



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

2

modeling, sparse representation has been successfully used in 
medical imaging [11], face recognition [12], and compressive 
sensing for networked data [13]. Sparse representation 
approximates a signal with a linear combination of a small 
number of elementary signals called atoms. Often, the atoms 
are chosen from a so called overcomplete dictionary. Such 
dictionaries can offer a wider range of generating atoms, 
allowing more flexibility in the representation and adaptability 
to its content [11,14].  

Guo et al. [15] adopted a 2-D Discrete Cosine Transform 
(DCT) basis as the sparsifying transform for realistic climate 
sensor data, but there is no guarantee that general transforms 
such as DCT, or Wavelet can sparsely represent the signal of 
interest [16]. Since we have the past data available at the sink, 
one possibility is to consider using the past data to construct the 
current frame. The investigation of exemplar-based sparsity for 
image processing can be found in literature [16,17]. Here, we 
propose to use an overcomplete dictionary composed of 
past-data and the 2-D DCT basis for the online data recovery. 
This dictionary is more effective than the fixed DCT basis, 
because with the temporal correlation, the current frame usually 
can be efficiently represented by a weighted linear combination 
of previous past frames. No off-line training phase is required. 
The recovery approach is simple enough to be implemented on 
the sink, with negligible delay compared to the sampling 
interval of the sensors.  

After we recover the previous frame, it becomes one atom of 
the overcomplete dictionary for the current frame. If there exist 
some errors in the previous frame, the errors will propagate to 
affect the recovery of the current frame. In order to reduce the 
error propagation, we propose to leverage the available data in 
the current frame to correct the corresponding errors in the 
previous frame first, and then use this updated dictionary for 
recovering the missing data in the current frame. If some delay 
is allowed, future frames can be incorporated to further 
improve the estimation accuracy of the current frame. 

Our contributions are summarized as following: 
1) Propose a sparsity-based online data recovery method. An 

overcomplete dictionary composed of past data frames and the 
DCT basis is used to achieve higher sparsity. 

2) Propose a scheme to reduce the error propagation by 
correcting the dictionary composed of recovered past frames.  

3) Propose an approach that incorporates future frames to 
help the recovery of the current frame to improve the 
performance of the data recovery. 

Our methods were tested on the data from a real sensor 
network application: monitoring the temperatures of the disk 
drive racks in a data center. Simulation shows that in terms of 
estimation accuracy and stability, the proposed approach 
outperforms existing average-based interpolation methods, and 
is more robust to burst missing along the time dimension. 

 

II. PROPOSED METHOD 

A.   Sparsity-based Recovery using Overcomplete Dictionary 
(SROD) 

Considering a network with M sensor nodes, each node 
records the physical parameters of an environment at time 
intervals 1, 2, , ,n  . If all the sensors successfully collect 

these samples, samples of all the nodes can be arranged in a 

vector      1 2, , ,
T

n Mf n f n f n   f   to form the network 

data (the nth frame). However, if some of the samples failed to 
be collected or transmitted to the sink due to hardware failure or 
environmental limitations, only a subset of nf  is observed. We 

can group the indices of the entries into two subsets: the first 
subset n  consists of those indices of entries observed in nf ; 

the second subset n  consists of those indices of entries 

missed in nf . Correspondingly, n
n
f  and n

n
f  are denoted as the 

available data and missing data in nf , respectively.  

Using only general transforms such as the 2-D DCT basis 
may not sparsely represent the current frame. Since we have 
past frames available at the sink, and with the temporal 
correlation, the current frame often can be represented as a 
weighted linear combination of a few previous past frames, we 
propose to add some past frames to the dictionary besides the 
2-D DCT basis, resulting in an overcomplete dictionary for 
online data recovery. 

We assume the data in the frames are highly temporally 
correlated which is the case in most sensor network 
applications, since the sampling rate usually is controlled so 
that the sensor data do not change drastically within the 
sampling period. We verify this assumption by plotting the 
temporal correlation between frames in our temperature dataset 
[18] as shown in Fig.2. The temporal correlation is defined as: 

 
0

0

1

1

n n
T
n n

n n

R
n 







   z z                      (1) 

where nz  is a normalized vector containing the sensor data in 

the nth frame and 1n   is the total number of frame pairs used 

in calculating  R  . This temporal correlation averages the 

inner products for all the pairs of frames with time lag  . Fig. 
2(a) shows the temporal correlation in 200 frames. The high 
correlation of the frames indicates the feasibility of their sparse 
representation. We verify the sparse representation of frames in 
our case by Fig. 2(b), which shows the coefficients when 
representing the current frame using our proposed 
overcomplete dictionary. In the figure, only a few large 
coefficients exist in the representation, which means past 
frames can be used to sparsely represent the current frame. 
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                               (a)                                                          (b) 
Fig.  2. (a) Data correlation between frames. (b) Coefficients when representing 
a frame using the proposed overcomplete dictionary. 

     
To get started, we assume there is no missing data or the 

missing data have been recovered in the past L frames. Let Ψ  
denote the DCT basis, then the overcomplete dictionary for 

nf is  2 1n n L n n  Φ f f f Ψ , where nΦ  is an 

 M L M   matrix with  rank n MΦ , so that any signal 

can be represented by more than one combination of different 
atoms. We assume that the current frame can be represented as 
a sparse linear combination of the atoms in nΦ , as shown in 

Fig. 3, 

n n nf Φ α                                       (2) 

where  is expected to be sparse, i.e. . 

 
Fig. 3. The current frame is a sparse linear combination of atoms in an 
overcomplete dictionary. This overcomplete dictionary is composed of past L 
frames and the 2-D DCT basis.  

 

With the notation of the available data n
n
f  and the missing 

data n
n
f , the rows of nΦ  can also be partitioned into two parts 

n
n
Φ  and n

n
Φ correspondingly. Thus, the current frame to be 

recovered in Eq. (1) can be rewritten as, 
n n

n n

n n
n

n n

 

 

   
      

   

f Φ
α

f Φ
                               (3) 

Since n
n
f  is not known, we are unable to make any use of 

n n
n n n
 f Φ α . Our hope for finding nα  relies on the equation 

corresponding to the available data,  
n n

n n n
 f Φ α                                    (4) 

The number of unknowns is more than the number of 
equations in Eq. (4), thus the system of equations is 
under-determined. Since we expect a priori that the 
presentation of the current frame will be sparse, nα  can be 

estimated by solving the 1  norm optimization problem: 

1
arg min s.t. n n

n
n n n n

 
α

α f Φ α ,                       (5) 

as long as n
n
Φ  satisfy the Restricted Isometry Property (RIP) 

[13, 16]. In other words, among all the solutions that satisfy the 
constraints, we select the one that has the smallest 1  norm, 

i.e., the sparsest solution. A relaxed version of this problem 
permits a small deviation in the representation, leading to the 
problem 

1
arg min s.t. n n

n
n n n n

  
α

α f -Φ α ε                    (6) 

where the constraint are for those components for which the 
data are not missing, and ε  stands for the permissible deviation 

of the representation n
n n
Φ α  from the original signal n

n
f . One 

appealing method for solving Eq. (6) is Basis Pursuit Denoising 
(BPDN) [14],  

2

12

1
ˆ arg min

2
n n

n
n n n n n  

α
α f -Φ α α                      (7) 

The solution to Eq. (7) is robust in the presence of noise, and 
also gives good performance even when the coefficient vector 
is not as sparse, which means nf  can be approximated with 

some error by truncating the small magnitude coefficients in 

nα . The final recovered output nA  is  

ˆ
n n nA Φ α .                                   (8) 

 

B. Recovery with Corrected Dictionary (RCD) 

One problem of the basic scheme in Section A is the error 
propagation. Since the last frame 1nf  is used as a column of the 

dictionary, the error of the recovered 1nA  may propagate to 

the recovery of nf . In order to reduce the possible error 

propagation, we can leverage the available data n
n
f  to correct 

1nA to some degree.  

We consider each component m
nr  of 1n n n r f f  as 

identical and independent distributed (i.i.d) random samples 
drawn from a Gaussian function 

 
 2

22e
2

m
n n

n

r b

m n
n

n

c
p r 






  ,                        (9) 

where nb  is the mean, 2
n  is the variance, and 

2
n

n

c


 is the 

height of the curve’s peak. To verify that Gaussian distribution 
is a reasonable assumption, we select 200 frames from the real 

data and plot histograms of the difference 1
m m
n nf f  for the mth 

node, m = 1,2, …, M. Fig. 4 shows the histograms for two 
nodes.  We can see that their histograms are close to a Gaussian 
distribution.  
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According to Eq. (9), the joint probability density function of 

 
1

Mm
n m

r


, which is also the likelihood of n , becomes 
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r

r .   (10) 

Thus, the negative log-likelihood is 

 
2

2
2

log log 2 log
2

n
n n n n

n

M M c 


    
r

r .     (11) 

Substituting nr  by 1n nf f  and omitting the constant, we can 

maximize the loglikelihood of nr  by minimizing 

2

1 2

1

2 n n
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                               (a)                                                       (b)       
Fig. 4 Plot histograms and then do Gaussian fitting of (a) 1st node, (b) 21st node. 

 
Note that some of the components (nodes) in 1nf  are 

observed, while others are missing. The same is true for nf . We 

can group the indexes of the components into three subsets: 

1n , consisting of those components that are observed in 1nf ; 

1n n  , consisting of those components whose data are 

observed in nf  but not in 1nf ; and 1n n  , consisting of 

those components whose data are missing in both 1nf  and nf .        

In the original scheme where we recover 1nf  directly from 

1 2, , ,n L n L n   f f f  (without leveraging nf ), we essentially use 

1
1
n

n


f  to solve for the coefficients 1nα . Now, since nf  is 

available, we can leverage 1n n
n

 f   by adding a new term to Eq. 

(7). By minimizing 1 1
2

12 2

1
n n n n

n n
n

    
f f  , and since 

1 1
1 1 1
n t n n

n n n
    

  f Φ α  , we can replace the new term with 

1 1
2

1 12 2

1
n n n n

n n n
n

    
 f Φ α  , and thus Eq. (7) becomes, 

1 1

1

1 1

2

1 1 1 1 1 12

2 2

1 12 2

1
ˆ arg min

2

2

n n

n

n n n n

n n n n n

n n n
n






 



 

 
    

   
 

  

 

α
α f Φ α α

f Φ α 

            (12) 

where  is a constant. This can also be written as,  

1

2

1 1 12 1

1
ˆ arg min

2n
n n n


     

α
α f Φ α α                 (13)                

where 

1 1

1 1

1 1

1

,

n n

n n n n

n n

n n
n n

 
 

 

 

 
 

   


   
        
      

f Φ

f Φ
f Φ 

. 

After we recover 1
ˆ

nα  in this way, we obtain  

1 1 1
ˆ

n n n  B Φ α .                           (14) 

1nB  would be a better recovered version of 1nf  than 1nA  

which uses the approach described in Section A. We can think 
of the original formulation as a special case of the new 
formulation. If n  is infinity, which means there is no 

correlation between 1nf  and nf , then the new formulation 

becomes the same as the original formulation. When n  is not 

infinity, the new formulation leverages the correlation between 
the two neighboring frames in recovering the missing data in 

1nf . However, the calculation of 1nB requires the information 

from nf . Thus, for a causal system, 1nB  cannot be used as the 

output recovered frame for 1nf . To have a better recovery of 

nf , what we could do is to update the overcomplete dictionary 

nΦ . That is, instead of using  2 1n n L n n  Φ A A A Ψ , we 

use the new dictionary   2 1n n L n n  Φ B B B Ψ  in the 

Eq. (7) to obtain a causal output nA  as the recovered nf . Fig. 5 

shows the process of this causal online data recovery system. 
For example, we assume that the first 100 frames are 
completely known a priori. When calculating 101st frame for 
the first time, represented as 101A , 1st frame to 100th frame are 

used in the dictionary, as described in Section A. When 102nd 
frame arrives, we recalculate 101st frame, represented as 101B , 

using 1st frame to 102nd frame, as described in Subsection B. 
Because 101B  is a better version of 101f  than 101A , we update 

the dictionary with 101B and then compute 102A  using Eq. 

(7-8).  The above process repeats until all the frames are 
recovered. Note that in evaluating the recovery error, we use 

nA instead of nB , so that the scheme is causal (i.e., the 

recovery of a frame does not depend on future frames).  
 

 
 

Fig. 5. Recovery with Corrected Dictionary (RCD).  A’
n is the causal output of 

fn, n = 1,2,…. By leveraging the difference between the mutual components of 
two neighboring frames, Bn-1 is a better version of fn-1 than A’

n-1. For a causal 
system, Bn-1 cannot be used as the recovered output of fn-1 since it uses the 
information from fn.  However, it can be used to update the dictionary for 
computing A’

n for better performance. 
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C. Recovery with Future Frame Compensation (RFFC) 

In Sections A and B, the data recovery only relies on the past 
and current frames. So these systems are causal and there is no 
delay for the output. However, for some practical systems, 
some delay is acceptable. For these systems, one can expect 
better performance if the future frames are incorporated to help 
the recovery of the current frame. We can use nB  as the output 

of recovered frame nf . More future frames (depending on the 

acceptable delay) can also be used to get better versions of nB . 

Let J denote the total number of future frames involved. Fig. 6 
shows the process of data recovery with future frame 
compensation when 2J  . 

Following the notations in Section B, there is a subset 

n n j   which consists of those indices whose components 

are not observed for frames nf  but observed for the next jth 

frame n jf . The corresponding data are n n j

n j
 

f  .  Note that 

subsets  
1

J

n n j j 
   can share common indices with each 

other, but not with nf . 

Also assume each component of n j n f f  has a Gaussian 

distribution with mean zero and variance 2
n j  , the current 

frame can be recovered according to  
2

12

2

2
21

1
ˆ arg min

2

2

n n

n

n n j n n j

n n n n n

J
n j

n j n n
j n j






 

 

   


 

  

 

α
α f Φ α α

f Φ α 

               (15) 

The simplest case is 1J  , and nα  can be computed as, 

1 1

2

12

2

12 2
1

1
ˆ arg min

2

2

n n

n

n n n n

n n n n n

n n n
n






 

 

   




  

 

α
α f Φ α α

f Φ α 

                (16) 

and ˆ
n n nB Φ α . 

 

 
Fig. 6. Recovery with future frame compensation (J = 2). Bn-1 is the noncausal 
output of  fn , n = 1, 2, ….. 

III. SIMULATIONS 

A. Simulation Setup  

Microsoft Dataset and Preprocessing 

The dataset used in simulations comes from Microsoft 
Research Data Center Genome (DC Genome) system [18]. The 
goal of the project is to understand how the power is consumed 
in data centers and then to use this understanding to optimize 
and control the data center resources. To get an idea of the 
scenario, Fig. 7 shows that the temperature across the racks and 
across different heights of the same rack varies significantly 
[18].  

 

 
Fig. 7.  The thermal image of an aisle in a data center. The infrared thermal 
image shows significant variations on intake air temperature across racks and at 
different height [18]. 
 

This dataset was recorded by sensors deployed in an 8×11 
grid over a one-day period. Since about 10% of samples in the 
original dataset are missing, we use 2-D K-Nearest Neighbor 
(KNN) spatial interpolation algorithm [8], one of Inverse 
Distance Weighted Averaging (IDWA) interpolation methods, 
to fill in these missing samples before simulation, so that we 
have a complete data as the ground truth. Besides, we observed 
that the original data between 1st frame and 350th frame are 
during 0:00-11:40 a.m. when the temperatures in the data 
centre do not change much. The recovery for frames between 
1st frame and 350th frame is comparable for the proposed 
methods and three-dimensional (3-D) KNN (will be shown in 
Table II later).  Thus, we focus our proposed data recovery on 
data range from 351st frame to 700th frame which has a larger 
magnitude range so that the results are more meaningful. The 
completed dataset we used in the simulations are as shown in 
Fig. 8, and the sampling interval is two minutes. Then, we 
generate random and burst missing data patterns for 451st frame 
to 700th frame, and apply our proposed data recovery scheme to 
estimate the missing data. 

 

 
Fig. 8. Temperature data range from 351st frame to 720th frame. Its size is 8×11

×370. Every two dimensional frame is arranged into a vector, so that the 
three-dimensional data are presented as a 2-D matrix. The color bar denotes the 
value of each sample. 
 



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

6

Three Dimensional KNN 
In the simulations, to extend 2-D KNN to 3-D KNN for our 

online data recovery scenario, the neighbors can only be chosen 
from the current frames and the past frames. Let  ,x y  be the 

spatial location of a node, and n be the frame index. Adapting to 
anisotropic spatial and temporal correlation, we use a parameter 
  as the weighting of the temporal correlation relative to the 

spatial correlation, thus the distance is computed as, 

      2 2 2

0 0 0d x x y y n n                       (17) 

where  0 0 0, ,x y n  and   , ,x y n   are the coordinates of a node 

with missing sample and a neighboring node, respectively. 
    In order to pick an appropriate  , we investigate the spatial 

and temporal variograms.  Assume  Z x  represents a sample 

at location  , ,x y n , then for a given distance d , the 

experimental variogram is defined as: 

       
 

21

2 # d

d Z x Z x d
d




      ,         (18) 

where  d  is the set of all data pairs with distance d , and 

 # d  is the number of data pairs with distance d. Fig. 9(a) 

shows the spatial variograms. The data values within d = 1 are 
highly correlated, while for other distances the process starts to 
look like an i.i.d process. Fig. 9(b) shows the temporal 
variogram. Comparing the spatial and temporal variograms, we 
pick the value for “ ” as 0.01. For the 3-D KNN algorithm, the 

weight is inversely proportional to the distance d . 
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                              (a)                                                           (b) 
Fig. 9. Variograms. (a) Spatial variogram, (b) Temporal variogram. 
 

Evaluation Criterion 
In order to evaluate the accuracy and stability of 3-D KNN 

and the proposed methods, we use Root Mean Squared Error 
(RMSE) and Maximal Absolute Error (MAE) calculated over 

all missing entries. Suppose f  and f̂  are the original and 
recovered data vectors, respectively, and I is the total number of 
missing samples in f . The RMSE is defined as, 

 2

1
ˆ

ˆRMSE( , ) , 1, 2, , ,

I

i ii
f f

i I
I




 


f f            (19)                                

where if  and ˆ
if  stand for thi missing entry of f  and f̂ , 

respectively. Note that all the observed entries remain the same 
in the data recovery process, and are excluded when calculating 
the recovery errors. Besides, the MAE of all missing entries is 
also used to assess the estimation stability. The MAE is defined 
as, 

   ˆˆMAE , max for 1,2, , ,i if f i I     
f f          (20)                   

where if  and ˆ
if  are as defined above. 

Specifically, we choose four evaluation metrics, including: 
(a) MAE of all nodes in each frame, (b) MAE of all frames in 
each node, (c) RMSE of all nodes in each frame, and (d) RMSE 
of all frames in each node. They evaluate the accuracy and 
stability of the methods node-by-node and frame-by-frame. 

 
Parameter setting 

To solve the 1  norm minimization in Eq. (8), (12) and (16), 

the “Sparselab 2.1” toolbox [19] is used. The parameters used 
in the proposed methods are 31 10   , 0.1  , 0.01  , 

and n  is automatically estimated directly from the past data 

frames. The number of nearest neighbors in 3-D KNN is 
9K  .  The size of each frame is 8×11, and the size of 2-D 

DCT basis is also 8×11. We generate burst missing patterns, 
i.e., the same node continuously missing samples along the 
temporal dimension, and the duration of time is defined as the 
burst missing length. In the simulations, we choose different 
missing rates (u) and burst missing lengths (v), and compare the 
above four evaluation metrics of 3-D KNN and the proposed 
approaches. 

 

B. SROD vs. 3-D KNN 

First, we discuss how the performance and complexity of 
SROD change with respect to the number of previous frames in 
the overcomplete dictionary. Compared with pure DCT 
dictionary, adding past frames into the dictionary can 
dramatically reduce the recovery error. This recovery error can 
be further reduced by increasing the number of past frames. 
However, further reduction of recovery error is not obvious 
when the number of past frame exceeds a threshold. As shown 
in Fig. 10(a), the recovery error decreases as the number of past 
frames increases. When the number of past frames is larger 
than 70, the recovery error no longer decreases significantly. 
On the other hand, increasing the number of past frames will 
increase the computation time [see Fig. 10(b)]. In our 
simulations, using 50 past frames is a reasonable choice to 
tradeoff the recovery error and the computation time. This is 
the default number of past frames in the following simulations.  
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                           (a)                                                       (b) 

Fig. 10.  Recovery error and computation time of KNN and SROD. u = 20%, v = 
10. (a) Recovery error with respect to the numbers of past frames in the 
dictionary. (b) Computation time with respect to the numbers of past frames in 
the dictionary. 
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    Fig. 11 shows an overcomplete dictionary, which is 
composed of 50 past 8x11 2-D frames and an 8x11 2-D DCT 
basis. 
 

 
Fig. 11.  The overcomplete dictionary for the 451st frame. Left half contains 50 
past data frames which change over time, and each frame is with mean zero and 
normalized to 1. Right half is the fixed 8x11 2-D DCT basis. 
 

With this dictionary, Table I shows the performance of the 
SROD and KNN, by summarizing the mean values of the above 
performance metrics for all the 451st ~700th  recovered frames. 
u = 10% and 20%, v = 5 and 10. The proposed approach 
outperforms KNN in terms of these evaluation metrics with 
more than 20% improvement. The mean error values of KNN 
and SROD both increase as the missing rate and missing burst 
length go up, but the error of the proposed method is still much 
lower than that of KNN. The maximal error values demonstrate 
that the proposed approach is more robust to different missing 
rates and missing burst lengths.  

We also compare KNN and SROD for 101st frame to 350th 
frame, and their performances are as shown in Table II. When 
temperature variation is small along the time dimension, the 
two methods can both reasonably recover the missing samples, 
and their performances are comparable. 

 
TABLE I. PERFORMANCE COMPARISON OF KNN AND SROD  

 
From 451st to 700th frame. u = 10% and 20%, v = 5 and 10. The numbers 
between brackets are percentage improvement of the evaluation criteria of the 
SROD relative to that of KNN, at the same u and v. 
               

TABLE II. PERFORMANCE COMPARISON OF KNN AND SROD  

 
From 101st to 350th frame. u = 10% and 20%, v = 5 and 10. The numbers 
between brackets are percentage improvement of the evaluation criteria of the 
SROD relative to that of KNN, at the same u and v.              
   

    Fig. 12 shows the MAE and RMSE of the two methods when 
u = 10% and v = 5, node by node, and frame by frame. On the 
majority of the nodes, SROD outperforms KNN in terms of both 
MAE and RMSE. On each frame, SROD shows larger 
improvement when the data change fast [see Fig.12(d) and Fig. 
8].        

 
                       (a)                                                            (b) 

 
                             (c)                                                              (d) 
Fig. 12. Performance comparison for KNN and SROD. u = 10%, v = 5.  (a) MAE 
of all frames in each node, (b) RMSE of all frames in each node, (c) MAE of all 
nodes in each frame, (d) RMSE of all nodes in each frame. 

 

C. Performance of RCD and RFFC 

In order to learn the performance of the two extended 
methods: recovery with corrected dictionary (RCD), and 
recovery with future one frame compensation (RFFC-1), we 
compare them with SROD.  

For fair comparison, KNN is also developed into KNN-CD 
and KNN-FFC-1, respectively. Correspondingly, KNN-CD 
updates the last frame by utilizing the available data of the 
current frame before estimating the missing data of the current 
frame, while KNN-FFC-1 estimates the missing data of the 
current frame by using the past frames and the next frame.  

In Table III, we set u = 20% and v = 1. The proposed 
approaches all perform much better than KNN, for about 30% 
improvement. For the proposed approaches, RCD performs 
slightly better than SROD; and RFFC-1 sees a larger 
improvement than SROD, by about 15%.  This can be seen 
more clearly in Fig. 13, which compares the performances of 
SROD and RFFC-1, in a node-by-node and frame-by-frame 
way. RFFC-1 can greatly improve the recovery quality of the 
SROD because the next frame introduces more new 
information. 

In Table IV, u = 20% and v = 5. The proposed approaches 
also all perform much better than KNN (by about 20%). For the 
proposed approaches, the performance of RCD is the same as 
SROD, and RFFC-1 has another 5% improvement over SROD. 
The improvements are not as big as that in Table III. The reason 
is that when the missing burst length become longer, the 
newly-introduced components becomes fewer, thus, it will not 
make much difference to correct one column of the dictionary. 
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TABLE III. PERFORMANCE COMPARISON OF SIX METHODS 

 
u = 20%, v = 1. The numbers between brackets are percentage improvement of 
the evaluation criteria of the other methods relative to that of KNN, at the same 
u and v. 

 
TABLE IV. PERFORMANCE COMPARISON OF SIX METHODS 

 
u = 20%, v = 5. The numbers between brackets are percentage improvement of 
the evaluation criteria of the other methods relative to that of KNN, at the same 
u and v. 
 
 

     
                              (a)                                                           (b) 

    
                            (c)                                                           (d) 

Fig.  13. Performance comparisons for the proposed approaches: SROD and 
RFFC-1. u = 20%, v = 1. (a) MAE of all frames in each node, (b) RMSE of all 
frames in each node, (c) MAE of all nodes in each frame, (d) RMSE of all nodes 
in each frame. 
 

To investigate the tradeoff between the performance and the 
delay in the RFFC scheme, we compare RFFC-1 with RFFC-2 
and RFFC-3. Table V shows their performances when u = 20%, 
v = 1 and 5. We can see that RFFC-2 results in smaller errors 
than RFFC-1. When v = 1, RFFC-3 achieves very similar 
performance to RFFC-2; when v = 5, RFFC-3 can further 
reduce the recovery error. Using more future frames will not 
improve the performance, because the correlation between the 
future frame and the current frame becomes weaker as the 
future frame is further away. 

From above comparisons, KNN interpolates the missing 
sample by averaging the values of K-nearest (temporally or 
spatially) neighbors, including both the past frames and the 
future frames, and they are not necessarily the most correlated 
samples. In contrast, the proposed methods find a small number 
of the most correlated frames (near or far) from a period of 

frames via 1  minimization to recover the current frame, thus 

the use of past frames and the future frames benefits the 
proposed methods significantly more than KNN.  
 

TABLE V. PERFORMANCE COMPARISON OF RFFC-1, RFFC-2 AND RFFC-3   

 
u = 20%, v = 1 and 5. The numbers between brackets are percentage 
improvement of the evaluation criteria of the other methods relative to that of 
RFFC-1, at the same u and v. 

 
We have also investigated the block-size effect to the 

proposed algorithm. Essentially, the whole frame can be 
considered as a large P×Q block of pixels.  Intuitively, by 
breaking it into smaller p×q blocks, the data in each smaller 
block could have higher correlation and could find a better 
match from the entries in the dictionary. We have investigated 
using various smaller block-sizes. However, we found the 
performance is about the same as treating the whole frame as a 
large P×Q block with the data we used in our simulations. The 
reason is that this dataset has relatively low spatial resolution, 
which leads to weak homogeneity in local regions, and that 
limits the advantage of block partition. 
 

D. Effect of noise 

In reality, the data are usually corrupted with noise. We add 
white Gaussian noise to the available data, and the noisy 
measurement vector is written as 

n
n
 y f ε ,                                   (21) 

where ε  is the Gaussian noise, whose power is controlled by 
signal-to-noise ratio (SNR) defined as 

2

2
dB 10 2

2

SNR 10log
n

n



f

ε
,                          (22) 

and then use BPDN algorithm 
2

12

1
ˆ arg min

2
n

n
n n n n 

α
α y -Φ α α   .               (23) 

Fig. 14 shows the estimation error of SROD under different 
noise levels. As the noise increases, i.e., SNR drops, the curves 
of total RMSE basically remain the same, until SNR is as low as 
10dB. This demonstrates that SROD is robust to low and 
medium noise. 
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Fig. 14.  Total RMSE of SROD for noisy data. u = 20%, v = 10. 
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E. Effect of the payload size 

In the type of sensor network applications we are addressing 
(e.g., temperature sensing), each node only reports its 
temperature reading. In order to achieve short delay, we assume 
that one packet contains only one reading number. Thus, the 
payload size should not be an issue. Each packet loss will result 
in one missing number in the frame.  

For the more general case when the delay is not a concern, 
and no encoding is performed, one packet may contain S 
original reading numbers. Table VI shows performances of 
KNN and SROD under different payload sizes S = 1, 2, 5, 10. 
The performance of KNN remain almost the same when 
payload size is smaller than 5, but become significantly worse 
when payload size is 10. SROD performs gradually worse when 
the payload size grows. However, for the payload size we 
compared in Table V, SROD still outperforms the KNN. Thus, 
the proposed method is more robust with respect to the payload 
size.  
 
Table VI. PERFORMANCE COMPARISON OF KNN AND SROD WITH DIFFERENT 

PAYLOAD SIZES 

 
u = 0.2. Payload sizes are 1, 2, 5 and 10. The numbers between brackets are 
percentage improvement of the evaluation criteria of SROD relative to that of 
KNN, at the same payload size. 

 

IV. CONCLUSION 

We presented new approaches for online data recovery in 
wireless sensor networks. A sparse linear relationship between 
a current frame and its past frames are modeled to estimate the 
missing data in the current frame. An overcomplete dictionary 
which is composed of the past data and the DCT basis is chosen 
to sparsely represent the current frame. Data recovery is 
achieved through 1  norm optimization. Correcting the last 

frame based on the current frame helps to prevent the error 
propagation. If some delay is allowed, the future frame can be 
used to further improve the performance. Simulation results on 
a real sensor data set demonstrate that the proposed approaches 
outperform the average-based interpolation methods in terms 
of both accuracy and robustness. Future work includes other 
data-based dictionaries for higher sparsity, and adaptive block 
partition methods. 
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