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Applications: environment sensing, building, agricultural
surveillance, medical care, military

Wireless Sensor Networks
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Data is missing

 Node power outage
 Hardware dysfunction
 Channel fading
 Bad environment

dark blue represent missing data spatial-temporal sampling model
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 Retransmission：not suitable to delay sensitive applications
 Interpolation methods: typical ones

(1) K-Nearest-Neighbor (KNN)
(2) Kriging

Intercommunity：linear combination of available data
Different weight：KNN：distance between neighbors;

Kriging：data statistics（variogram）

 Sparse linear combination of atoms

 Weight relies on the available data

Missing data recovery

Proposed method
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Sparsity
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Model

Key: How to reduce recovery error?
(1) Dictionary, (2) Available data consistency

Maximum a posteriori probability

Assumption: Gaussian noise

Output: 
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Dictionary

Features of WSN data
 smooth, few boundaries
 weak spatial correlation
 strong temporal correlation
Example: surface sunshine duration

 Spatial domain：DCT basis
 Temporal spatial domain：a few past frames + DCT basis

(overcomplete dictionary)
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Sparsity-based online data recovery

Proposed approach:
Sparse Recovery using Overcomplete Dictionary (SROD):
Using a sparse linear combination of the overcomplete
dictionary to represent the current frame.

Motivation：
temporal correlation among frames
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Simulation

3D-KNN: anisotropic temporal spatial correlation

Data missing rate: 10%, 20%

Burst missing length: 5, 10



12

Robustness to Noise
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Error propagation

 Problem: the recovery error of last frame may propagate

 Possible solution:
Leverage the available data of current frame to correct
the recovery error in the last frame in some degree.

Last frame missing, 
but current frame available
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Recovery with Corrected Dictionary (RCD)

Neighboring data consistency

Update one atom of the dictionary

Bn-1: updated last frame 
using RCD

A’n: recovered current 
frame using SROD
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Neighboring data consistency

Current frame

Recovery with future frame compensation (RFFC)

 If delay is not a major concern:

Bn: recovered current frame 
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Three proposed sparsity-based recovery method compare with 
corresponding 3-D KNN

Missing rate: 20%, burst missing length: 1

 Error reduce by 40%

 RFFC reduce error by 10% over SROD

Simulation



17

Conclusion

 Propose sparsity-based online data recovery method

 Construct an overcomplete dictionary: past frames + DCT basis

 Recovery performance significantly outperforms KNN

 Robust to certain noise

 RCD may reduce error propagation

 RFFC can further improve recovery performance
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 Test missing pattern from the perspective of

wireless communication

 Extract data feature using data mining

 Design dictionary and optimization algorithms

Future work
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