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Abstract: Reducing the acquisition time for two-dimensional nuclear magnetic resonance 24 

(2D NMR) spectra is important. One way to achieve this goal is reducing the acquired data. 25 

In this paper, under the framework of compressed sensing, we proposed to undersample the 26 

data in the indirect dimension for a type of self-sparse 2D NMR spectra, that is, only a few 27 

meaningful spectral peaks occupy partial locations, while the rest locations own very small 28 

or even no peaks. The spectrum is reconstructed by enforcing its sparsity in an identity 29 

matrix domain with ℓp (p = 0.5) norm optimization algorithm. Both theoretical analysis and 30 

simulation results show that the proposed method can reduce the reconstruction error 31 

compared with the wavelet-based ℓ1 norm optimization. 32 

Keywords: NMR; spectral reconstruction; sparsity; undersampling; compressed sensing 33 

 34 
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1. Introduction 1 

Nuclear magnetic resonance (NMR) spectroscopy is widely utilized to analyze the structures of 2 

chemicals and proteins. Multidimensional NMR spectra can provide more information than one-3 

dimensional (1D) NMR spectra. The acquisition time for a conventional two-dimensional (2D) NMR 4 
spectrum is mostly determined by the number of 1t  increments in the indirect dimension. One possible 5 

way is to reduce the acquisition time is to reduce the number of 1t  increments. However, this will 6 

result in aliasing of the spectrum in the indirect dimension [1,2] because the sampling rate is lower 7 

than the requirement of Nyquist sampling rule. 8 

Researchers have been seeking for suppressing the aliasing from the aspects of sampling and 9 

reconstruction. Radial sampling presents relatively small leakage artifacts [3] and Poisson disk 10 

sampling is observed to provide a large low-artifact area in signal vicinity [4]. The maximum sampling 11 

time for multi-dimensional NMR experiments was analyzed by Vosegaard and co-worker [5]. Besides 12 

the sampling patterns, some reconstruction algorithms have been employed to improve spectral quality, 13 

including maximum entropy [6,7], iterative CLEAN algorithm [8] and Bayesian reconstruction [9]. 14 

The sparse sampling was incorporated with intermolecular multiple-quantum coherences for high-15 

resolution 2D NMR spectra in inhomogeneous fields [10].  16 

Recently compressed sensing (CS) theory [11,12], for reconstructing signal from fewer number of 17 

measurements than the number Nyquist sampling rule requires, has attracted lots of attention in 18 

medical imaging [13], single pixel imaging [14], and computer vision [15], etc. Under the assumption 19 

that the acquired data is sparse or compressible in certain sparsifying transform domain, CS can 20 

successfully recover the original signal from a small number of linear projections with little loss or no 21 

loss of information. The choice of sparsifying transform is important in the CS. The sparsfying 22 

transform should be maximally incoherent with the measurement operator. Intuitively, the target signal 23 

should be sparsely represented in the transform domain, e.g., wavelet transform domain, and this spare 24 

representation should be spread out in the encoding scheme. Iddo introduced CS to reconstruct 2D 25 

NMR spectrum from partial random measurements of its time domain signal under the assumption that 26 

the spectrum is sparse in wavelet domain [16].  27 

In this paper, we focus on the reconstruction of self-sparse NMR spectra, that is, a few meaningful 28 

spectral peaks occupy partial locations while the rest locations own very small or even no meaningful 29 

peaks. NMR spectra includes regions where no signals arise because of the discrete nature of chemical 30 

groups [17].The reason we pay attention to self-sparse NMR spectra is that many NMR spectra of 31 

chemical substances fall in this type [3,10,16,17]. Based on the concept of sparsity and coherence in 32 

CS, we demonstrate that wavelet transform is not necessary to sparsify the self-sparse NMR spectra or 33 

even worsens the reconstruction. We propose to reconstruct the NMR spectrum by enforcing its 34 

sparsity in an identity matrix domain with ℓp (p = 0.5) norm optimization algorithm. Simulation results 35 

show that the proposed method can reduce the reconstruction error compared with the wavelet-based ℓ1 36 

norm optimization.  37 

Recently, Kazimierczuk and Orekhov [18] and Holland et al. [19] independently proposed to use 38 

CS in the proton NMR and showed promising results in reducing acquired data. A combination of 39 

spatially encoding the indirect domain information and CS was proposed by Shrot and Frydman [20]. 40 

The spectra were considered to be sparse themselves [18-20], differing from the sparse representation 41 
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using wavelets [16]. However, no comparison on the reconstructed spectra with and without wavelet 1 

transform was given and no theoretical analysis was presented. In this paper, we will analyze the 2 

performance of wavelet transform in the CS-NMR basing on the sparsity and coherence properties and 3 

simulated results. 4 

The remainder of this paper is organized as follows. In Section 2, the reason to undersample the 5 

indirect dimension is given by calculating the acquisition time for a 2D NMR spectrum. In Section 3, 6 

the two key factors, sparsity and coherence, of CS are briefly summarized and their values are 7 

estimated for 2D spectra, followed by the proposed reconstruction method. In Section 4, reconstruction 8 

of self-sparse NMR spectra is simulated to show the shortcoming of the wavelet and the advantage of 9 
identity matrix. The improvement of utilizing p  norm is also demonstrated. Finally, the discussions 10 

and conclusions are given in Section 5.  11 

2. Undersample the Indirect Dimension in 2D NMR 12 

In NMR spectroscopy, a typical sampled noiseless time domain signal can be described as a sum of 13 

exponentially decaying sinusoids 14 

  2

1

j j j

k t
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i ik t

k j
j

y A e e e   
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where J  is the number of sinusoids, jA , j , j  and j  are the amplitude, phase in radians, decay 15 

time and frequency, respectively, of the thj  sinusoid [21]. t  is the sampling interval and 16 

 0,1, ,k k K   is an integer to denote the thk  sample point. Such a signal will give rise to a 17 

spectrum that is the sum of Lorentizian peaks centered at different frequency j  [21], where j  18 

corresponds to thj  type of nuclear spins. A conventional 1D single pulse NMR experiment enforces 19 

an excitation pulse on a sample followed immediately by data acquisition. The signal eventually 20 

decays due to relaxation [22], thus it is called free induction decay (FID). Fourier transform (FT) is 21 

applied on the FID to obtain a frequency domain spectrum. Figure 1 shows the simulated FID signal 22 

and the corresponding 1D NMR spectrum obtained from FT.  23 

Figure 1. Simulated FID data in time domain (a) and its corresponding 1D NMR spectrum 24 
(b). Note: the FID is simulated according to Equation (1) with 2J  , 1 0.5A  , 2 1A  , 25 

0.01t s  , 1 2 800   , 1 2 0   , and 1 70  Hz, 2 20  Hz.  26 

 27 

(a)        (b) 28 

 29 
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The typical experimental time for a 1D NMR spectrum usually takes several seconds, thus it is not 1 

time consuming. However, for a 2D NMR spectrum, the time domain signal is generated based on two 2 
time variables 1t  and 2t . As shown in Figure 2, one scan of 2D NMR spectrum contains three steps: 3 

first, the sample is excited by one or more pulses in the preparation period. These pulses result in the 4 
evolution of magnetization with time 1t ; then, the sample is further excited in the mixing period; 5 

finally, an FID signal is recorded as a function of 2t . Usually, 1t  is set as 6 

1 1 1 1 1 1 1,  2 ,  ,  ,  ,  t t t n t N t       (The increment 1t  is usually at the order of milliseconds). The 7 

number of 1t  increments ( 1N ) is determined by 8 

1
1

1

SW
N

f



 (2) 

where 1
1

1
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t



 is the desired spectral width and 1
1 1

1
f

N t
 


 is the corresponding spectral resolution. 9 

The typical 1N  is from 50 to 500 [22]. Given a fixed 1 1 1t n t  , one scan is performed and the FID 10 

signal is recorded and stored along the direct dimension. After the scan, the nuclear spins are allowed 11 
to return to their equilibrium states before the next scan for  1 1 11t n t    [22].  12 

Figure 2. General scheme for 2D NMR spectra. 13 

 14 
 15 

Finally, 2D FT is performed on the 2D FID data. If the time for performing all the pulses in one 16 
scan is pt , the total scanning time for a 2D NMR spectrum will be 17 
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In order to obtain a good resolution in the indirection dimension, 1N  is usually several tens or 18 

hundreds or even more. This will cause the total scanning time for a 2D NMR spectrum to be tens of 19 

minutes or even several hours [22-26]. 20 
In this paper, we aim to reduce the scan number for 1t  dimension. Rather than using the uniform 21 

increment in the indirect dimension  1 1 1 1 1 1 1,  2 ,  ,  ,  ,  t t t n t N t      , we randomly choose 22 

unduplicated Q  numbers from  11, 2, ,qn N  , and let 1 1qt n t  . Let  23 

1

Q

N
   (4) 

be the sampling rate in this paper, the total time to scan a 2D NMR spectrum is approximately 24 

1 1

1
Q N N

Q
T T T

N
   (5) 
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The approximation is made by ignoring the total evolution time 
 1

1
1,2, , , 1,2, ,q

q
n N q Q

n t
 


 

 since this value 1 

is only in the order of seconds. Compared to the time to acquire a 2D spectrum with fully sampled 2 

FIDs in the indirection dimension, undersampling the FIDs in the indirect dimension can greatly 3 
reduce the acquisition time for a 2D NMR spectrum if   is small enough. Figure 3 shows an example 4 

to randomly undersample the indirect dimension with sampling rate 5 11 0.45   . It means we save 5 

nearly half of the acquisition time of the conventional scheme. 6 

 7 

Figure 3. An example of random undersampling in the indirect dimension. The symbol  8 

denotes the acquired FIDs.  9 

 10 
 11 

However, this undersampling will result in aliasing artifacts [1,6]. It would be of great value if we 12 

can minimize these artifacts and reconstruct the full 2D NMR spectrum from the limited data. Here we 13 

explore the undersampling and reconstruction methods under the framework of CS.  14 

3. Reconstruction of 2D Self-Sparse NMR Spectra with Compressed Sensing  15 

3.1 Basic Concepts in Compressed Sensing 16 

The CS proposed by Candès et al. [11] and Donoho [12] is a new theory to do undersampling and 17 

reconstruct the signal of interest from limited physically acquired data. They build a theoretic 18 

foundation that one can exactly or approximately recover signals from highly incomplete 19 

measurements. The two basic tenets to guarantee the performance of CS are sparsity and incoherence. 20 

(a) Sparsity. For the signal  and a basis dictionary  (e.g., identity matrix, FT, 21 

discrete cosine transform or wavelet transform matrix), the sparsity is often interpreted as 22 

 (6) 

where 
0

α  denotes the 0  norm that counts the nonzero entries in α , and S  is the number of nonzero 23 

entries. If x  is sparse without transformation (namely sparse in identity matrix ), it is called 24 

self-sparse since other complicated sparsifying transform, e.g. wavelet transform, is not required.  25 

Candès et al. [11] and Donoho [12] proved that it is possible to recover the original signal x  from 26 
 logN S  measurements. This means the required number of measurements is proportional to the 27 



Sensors 2011, 11                            

 

 

6

number of nonzero entries in the basis Ψ . The smaller the S  is, the less the number of measurements 1 

is required. 2 

(b) Incoherence. When signal x  is sampled by a sensing matrix M NΦ , the measurements  3 

of x  is 4 

f Φx  (7) 

The coherence is defined as [27,28] 5 

 
,

max ,k j
k j

  Φ,Ψ  (8) 

where k  is the thk  rows of Φ  and j  is the thj column of Ψ . The coherence measures the largest 6 

correlation between any row of Φ  and column of Ψ . The less the coherence between Φ  and Ψ  is, the 7 

smaller the   is. The value range of   is 1, N 
  . The minimal coherence 1   occurs when Φ  and 8 

Ψ  is a time-frequency pair [29]. CS requires the coherence to be as small as possible, which means 9 
each measurement vector k  must be ‘spread out’ in the Ψ  domain [28].  10 

If the signal x  satisfies [30] 11 

 0

1 1
1

2
S


 

    
 

α
Φ,Ψ

, (9) 

it can be perfectly recovered by solving 12 

0
ˆ min

α
α α , . .s t y ΦΨα　  (10) 

where 
0

α  denotes the 0  norm that counts the nonzero entries in α . 13 

The recovered signal is  14 

ˆˆ x Ψα  (11) 

Equation (9) implies that if the coherence between Φ  and Ψ  is small, more non-zeros can be 15 

allowed in the sparse representation α . CS suggests Φ  to be random enough to guarantee its 16 

incoherence with any Ψ . This is also observed that random sampling in time domain can improve the 17 

quality of reconstructed spectra [31]. 18 
However, 0  norm is known to be intractable and sensitive to noise [11,12], and 1  norm convex 19 

optimization is commonly used in CS to recover x  by solving 20 

1
ˆ min

α
α α , . .s t y ΦΨα　  (12) 

The accuracy of CS reconstruction using Equation (12) can be guaranteed if ΦΨ  satisfies the 21 
appropriate restricted isometry properties [32]. A restricted isometry constant S  [32] defined as the 22 

smallest number such that 23 

   2 2

2 2
1 1S S    α ΦΨα α  (13) 

holds for all vectors that have at most S  nonzero entries. If 2 2 1S   , the solution to the 1  norm 24 

problem is that of the 0  problem [32]. 25 

The number of measurements M  should satisfy  26 
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 2 , logM C S N   Φ Ψ  (14) 

so that the signal x  can be exactly recovered from measurements y  in overwhelming majority of 1 

cases [28]. Equation (14) implies that the number of measurements is proportional to the number of 2 
nonzero entries S  in α  and the square of coherence  . If both S  and   are small, the required 3 

number of measurements M could be small. This means that one can perform fewer measurements to 4 

save acquisition time while reconstruct original signal x  very well.  5 

Iddo [16] applied CS to remove the aliasing artifacts from incompletely acquired FID data by 6 

enforcing the sparsity of 2D NMR spectra in wavelet domain according to 7 

1
ˆ min

α
α α , . . T Ts t  y ΘF Ψ α　  (15) 

where y  is the measurements in time domain, Θ  is a random sampling operator defining the FIDs 8 

acquired in the indirect dimension, TF  denotes the inverse 2D FT, and TΨ  is the inverse 2D wavelet 9 

transform. According to Equation (11), the recovered spectrum is ˆˆ Tx Ψ α .  10 

In this paper, we focus on the reconstruction of self-sparse NMR spectra in which significant peaks 11 

take up partial locations of the full NMR spectra while the rest locations own very small or even no 12 

peaks. Ideally, if the number of sinusoids J  in Equation (1) is very small, and the meaningful peaks 13 

are narrow enough relative to the whole 2D frequency coverage, the spectra can be considered to be 14 

sparse since the number of non-zeros for the spectra is much smaller than the number of spectrum 15 

points in the 2D NMR spectra. 16 

The sparsifying transform and the coherence between Ψ  and TΦ ΘF  play important roles in the 17 

CS, as we have discussed. In the following sections, we will demonstrate that wavelet is not necessary 18 

to sparsify or even worsens the self-sparse NMR spectra based on the concept of sparsity and 19 

coherence. We will then reconstruct the NMR spectrum by enforcing its sparsity in an identity matrix 20 
domain with  0.5p p   norm optimization algorithm.  21 

To represent the NMR spectra in conventional way [4-7,17], the X and Y coordinate axes are shown 22 

with unit of parts per million (ppm) [21] defined as 23 

6ref

0

10
 



   (16) 

where   is the chemical shift of a peak with frequency  , ref  is the frequency of a reference peak 24 

and 0  is the spectrometer carrier frequency.  25 

3.2. Sparsity of Self-Sparse NMR Spectra 26 

Figure 4(a) shows a 2D 1 1H- H correlation spectroscopy (COSY) where most of the peaks fill partial 27 

and very limited region of the full spectrum. This leads to the sparsity of spectrum because the number 28 

of non zeros in the 2D spectrum is much smaller than the number of spectrum points. This 29 

phenomenon is also observed by Yoh Matsuki et al. [17].  30 

To test the sparsity of NMR spectra, we can measure the decay of coefficients in a sparsifying 31 

transform domain and evaluate the approximation error by retaining the -termk  largest coefficients, 32 

because the reconstruction error is proportional to the power law decay rk  , where r  is a constant 33 
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implying the sparsity of signal [29]. Rapid decay of coefficients implies that one can use less non-zero 1 

coefficients to approximate a NMR spectrum. If we directly measure the decay of signal without 2 

complicated sparsifying transform, e.g. wavelets, it means measure the self-sparsity of signal. 3 

Mathematical saying is measuring its sparsity in the identity matrix.  4 

As shown in Figure 4(b), both the spectra and its wavelet coefficients can achieve rapid decay. By 5 

retaining 3% largest magnitude coefficients, spectra can be reconstructed well in Figure 4(c) and (d). 6 

However, the spectrum is sparser than its representation in wavelet domain. This is demonstrated by 7 

the faster decay of spectrum than that of its wavelet coefficients in Figure 4(b). By retaining the 1% 8 

largest magnitude coefficients, wavelet fails to represent some peaks while the spectrum itself can 9 

represent these peaks, as marked by the arrows in Figure 4(e) and (f).  10 

For a 2D 1 13H- C  COSY spectrum, the spectrum decays faster than its wavelet coefficients (Figure 11 

5(b)). This implies the identity matrix can provide sparser representation of spectra than wavelet does. 12 

Peaks are lost or distorted by using wavelet transform to represent the spectrum (Figure 5(e)), but the 13 

spectrum is represented very well with the identity matrix. (Figure 5(f)). This phenomenon is 14 

consistent with the observation on the 2D 1 1H- H  COSY spectrum discussed above.  15 

As a result, this spectrum is self-sparse, which means spectrum is sparse in the identity matrix. Thus, 16 

according to Equations (9) and (14), it is better to use identity matrix than use wavelet to reconstruct 17 

the self-sparse spectra from undersampled FIDs since wavelet can not provide sparser representation of 18 

spectrum. In fact, Stern et al. [33] proposed to do iterative soft thresholding on the spectrum directly, 19 

not on wavelet coefficients, to recover one dimensional NMR spectrum from the truncated FID. 20 

Although the sparsity of NMR spectra is not explicitly expressed in that work [33], the recovered 21 
spectrum is obtained from minimizing 1  norm of spectrum, which implies to enforce sparsity of the 22 

spectrum. The problem of their method is that truncation violates the random sampling scheme in CS 23 

and results in strong Gibbs ringing which is hard to suppress [29]. What is more, truncating the 1D 24 

FID is not necessary to save the time to scan a spectrum since scanning a 1D NMR spectrum is fast 25 

and only in the order of seconds.  26 
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Figure 4. Sparsity of a 1 1H- H  COSY spectrum and its wavelet (symmlet wavelet with 4 1 

decomposition levels and 8 vanishing moments) representation. (a) The fully sampled 2 

NMR spectrum; (b) decay of real part of spectrum and its wavelet coefficients; (c,e) 3 

reconstructed spectra from 3% and 1% largest coefficients in wavelet domain; (d,f) 4 

reconstructed spectra from 3% and 1% largest coefficients in identity matrix domain. Note: 5 

Wavelet fails to represent peaks marked with arrow in (e) and these peaks are successfully 6 

represented in (f).  7 

 8 
(a)      (b) 9 

  10 
(c)      (d) 11 

 12 
(e)      (f) 13 
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Figure 5. Sparsity of a 1 13H- C  COSY spectrum and its wavelet (symmlet wavelet with 4 1 

decomposition levels and 8 vanishing moments) representation. (a) The fully sampled 2 

NMR spectrum; (b) decay of real part of spectrum and its wavelet coefficients; (c,e) 3 

reconstructed spectra from 1% and 0.1% largest coefficients in wavelet domain; (d,f) 4 

reconstructed spectra from 1% and 0.1% largest coefficients in identity matrix domain. 5 

Note: Wavelet fails to represent peaks marked with arrow in (e) and these peaks are 6 

successfully represented in (f).  7 

 8 
(a)      (b) 9 

 10 
(c)      (d) 11 

 12 
(e)      (f) 13 
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3.3. Coherence Property of Wavelet-Based and Identity Matrix-Based CS-NMR Spectra 1 

Besides the sparsity of signal, another key factor for CS is the coherence between Φ  and Ψ . 2 

According to Equations (9) and (14), fewer measurements are required for signal sampling system Φ  3 

if it is less coherent with Ψ  and the signal has same sparsity for different Ψ . 4 

Pioneer work on CS has pointed out that the coherence of a time-frequency pair is 5 

   , , 1T  Φ I ΘF I  [28]. Thus, we only need to compute the coherence between undersampled 6 

Fourier operator Φ  and wavelet basis TΨ .  7 

The undersampling of Θ  in the indirect dimension is carried out by choosing some of FID points in 8 

this dimension. To make this undersampling intuitive, a binary mask which has the same size of 2D 9 
FID is shown as the undersampling pattern in Figure 6(a). If the value of mask at location  ,i j  is 10 

equal to 1 shown as a white pixel, the FID at location  ,i j  is acquired.  11 

To avoid the influence of randomness on the coherence calculation, Θ  is randomly generated 10 12 

times and the coherence is averaged for each sampling rate. Figure 6(b) shows that the coherence 13 

between wavelet and undersampled Fourier operator Φ  is larger than the coherence between identity 14 

matrix and Φ . So, from the aspect of coherence, it is also better to choose the identity matrix for self-15 

sparse NMR spectra. 16 

Figure 6. Coherence of wavelet and FT. (a) One sampling pattern in the indirect 17 
dimension with sampling rate 0.30   (Fully sampled points in the indirect dimension is 18 

1 64N  ); (b) coherences for different sampling rates. The symmlet wavelet with 4 19 

decomposition levels and 8 vanishing moments is chosen as a typical wavelet for test, 20 

which is also the typical wavelet in [16]. Error bar stands for the standard deviation when 21 

repeating 10 times at each sampling rate.  22 

   23 
(a)     (b) 24 

3.4 Reconstruction of Self-Sparse NMR Spectra with p  Norm Minimization 25 

In this paper, we propose to reconstruct the self-sparse 2D NMR spectra with identity matrix I  as 26 

follows: 27 

1
ˆ min , . .s t 

x
x x y Φx　 , (17) 
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where TΦ ΘF .  1 
To further improve the reconstruction, a  0 1p p   norm is incorporated which has been 2 

demonstrated to give better reconstruction of MR images with fewer measurements than 1  norm does 3 

[34-37]. 4 

ˆ min , . .
p

p
s t 

x
x x y Φx　 , (18) 

where 
1

N
p p

np
n

x


x  and nx  is the thn entry of vector x . For the function ( )
p

f x x , with 0p  , 5 

( )f x  gets closer to the 0  norm of x , as shown in Figure 7. Theoretically, the required number of 6 

measurements [38] by enforcing the sparsity with a  0 1p p   norm is  7 

1 2( ) ( ) log( / )M C p K pC p K N K  , (19) 

where 1C  and 2C  are determined explicitly and bounded in p  and the recommend p  is 0.5 [34].  8 

Figure 7. The value of ( )
p

f x x  versus the value of p . 9 

 10 
In this paper, the p  norm minimization is solved via the p-shrinkage operator [39] with 11 

continuation algorithm [40] because of its fast computation. This algorithm is abbreviated as PSOCA 12 

and summarized in Algorithm 1.  13 
For a given continuation parameter  , PSOCA is implemented to solve two sub-problems: 14 

1) p-shrinkage operator 15 

   1
max ,0

p jp
j j j j

j

S 


  
x

α x x x
x

, (20) 

where 
1

2p    and   is a parameter to be updated in the continuation scheme, jx  and jα  are the 16 

thj  entry of column vectors x  and α , respectively.  17 

2) solve linear equation  18 

2 2

2 2
min

2 2

 
  

x
α x y Φx , (21) 

which can be simplified to  19 

  T T T     I P F x F α Θ y , (22) 
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where the term TP Θ Θ  is a diagonal matrix consisting of ones and zeros. The diagonal entries of P  1 

correspond to the location of FID data and the entry value is 1 if a corresponding FID data point is 2 

sampled, otherwise the entry value is 0. Equation (22) can be solved fast since only discrete Fourier 3 

transform and entry-wise division are required. 4 

Algorithm 1. Self-sparse NMR spectra reconstruction with undersampled data using PSOCA.  5 

Initialization: 
Input the sampled FID data y , set the regularization 

parameter 810   and tolerance of inner loop 
35 10   . Initialize Tx FΘ y , last x x , 62  , and 

α 0 . 
Main:  
        While 162   
             Inner loop:  

1.  Given x , 
For 1j   to J , solve Equation (20),  
the solution is α ; 

        2.  Given α , 
solve Equation (22), the solution is x ; 

3. If last    x x x ,  last x x , go to step 1; 

Otherwise, go to step 4; 
             Outer loop:  

4. ˆ x x , 2  , go to step 1. 
End While 

Output: x̂  

4. Simulation Results and Analysis 6 

In this section, we will show the advantage of the proposed method in two aspects: 1) identity 7 
matrix as the sparsifying transform is compared with wavelet transform; 2) p  norm minimization is 8 

compared with 1  norm minimization. The recommended value of p  is 0.5 for stability from 9 

empirical experiments [34]. The notation 0.5  is short for p  with 0.5p  . The typical 1  norm 10 

minimization algorithms compared in this paper include iterative soft thresholding (IST) algorithm 11 
[16,41-43], alternating and continuation algorithm (ACA) [40]. The ACA is just 1p   in PSOCA. 12 

Because regions of small spectrum values usually contain no peaks for practical analysis, we set 13 

magnitude smaller than a constant T  to be zero according to  14 

 
   

 
,

0,
T

j j T
j

j T

 


x x
x

x
 (23) 

where x  denotes the absolute value of spectra and Tx  denotes the absolute value of post processed 15 

NMR spectra. For evaluation, T  is set to two values. First, T  is set to zero, which means spectrum 16 

with small absolute values, possibly noise, are not suppressed. Second, T  is set to the lowest value of 17 
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contour when plotting the 2D spectrum. This is reasonable because peaks with absolute values smaller 1 

than T  are not seen in the contour plot. 2 
Suppose x̂  denotes the reconstructed spectrum from undersampled FID, relative 2  norm error 3 

(RLNE) is defined to measure the reconstruction error as 4 

2

2

ˆ
RLNE T T

T




x x

x




 (24) 

where x  is the reconstructed spectrum from fully sampled FID and ˆ0 ,  1T x x . RLNE evaluates the 5 

normalized error presented in the reconstructed spectrum from undersampled FID. The lower the 6 

RLNE is, the better the reconstructed spectrum is consistent to the fully sampled spectrum. 7 

4.1. Reconstruction of the spectra 8 

The improvement by using the proposed method is verified from the less crowed 1 1H- H COSY 9 
spectrum and more crowded 1 13H- C  COSY spectrum. The sampling patterns of the two spectra are 10 

shown in Figure 8. 11 

Figure 8. Sampling pattern used in simulation. (a) Cartesian sampling pattern with 12 
sampling rate 0.20 for the 2D 1 1H- H  COSY spectrum ( 1 256N   points) in Figure 4(a); (b) 13 

Cartesian sampling pattern with sampling rate 0.25 for the 2D 1 13H- C  COSY spectrum 14 
( 1 128N   points) in Figure 5(a). 15 

  16 
(a)                                          (b) 17 

 18 

Figure 9(c–h) shows the reconstructed 1 1H- H  COSY spectra corresponding to the sampling pattern 19 
in Figure 9(a) with a sampling rate of 0.20. With the 1  norm minimization, all the peaks are recovered 20 

successfully by using identity matrix (Figure 9(d,f)), while some peaks are lost by using wavelets 21 

(Figure 9(c,e)). Since the contours for the marked peaks look faint, we also plot the 1D slices along the 22 

indirect dimension in Figure 10. The height of one peak in the wavelet-based reconstruction in Figure 23 

10(a,b) are much lower than those in the fully sampled spectrum, leading to the peak lost in the 24 

contour plots in Figure 9(c,e). Furthermore, the nonlinear operation on wavelet coefficients induces the 25 

artifacts labeled in Figure 9(c,e). This phenomenon is also observed in the 1D slices shown in Figure 26 

10(a,b), where wavelet reconstruction generates illusive peaks. 27 
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With the 0.5  norm minimization, the errors caused from wavelet and identity matrix reconstruction 1 

are reduced, as shown in Table 1. One can still observe the reduced peak height and artifacts in 2 

wavelet-based reconstruction, but identity matrix performs very well (Figure 10(d)). The advantage of 3 

0.5  norm over 1  norm is obvious in the crowded 1 13H- C  COSY spectra, as will be shown in the 4 

following discussion. 5 

Figure 9. CS reconstruction of a 2D 1 1H- H  COSY spectrum using wavelet and identity 6 

matrix. (a,b) reconstructed spectra using fully sampled FID and undersampled FID with 7 

zero filling, respectively; (c,d) reconstructed spectra using wavelets and identity matrix 8 
with IST-based 1  norm, respectively; (e,f) reconstructed spectra using wavelets and 9 

identity matrix with PSOCA-based 1  norm, respectively; (g,h) reconstructed spectra using 10 

wavelets and identity matrix with PSOCA-based p  norm, respectively. 11 

 12 
                                                   (a)                                                 (b) 13 

 14 
(c)                                            (d) 15 

 16 
(e)                                            (f) 17 
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 1 
 (g)                                            (h) 2 

 3 

Figure 10. 1D slices along the indirect dimension for the chemical shift of 8.2 ppm (a-c) or 4 
7.2 ppm (d) in the direct dimension. (a) Spectra reconstructed with IST-based 1  norm; (b) 5 

spectra reconstructed with PSOCA-based 1  norm; (c) spectra reconstructed with PSOCA-6 

based 0.5  norm; (d) spectra reconstructed with PSOCA-based 0.5  norm. 7 

 8 
(a)                                                                 (b) 9 

  10 
(c)                                                                 (d) 11 

 12 
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Table 1. Reconstruction error of a 1 1H- H  COSY spectrum 1 

Methods Zero-filling IST 1  PSOCA 1  PSOCA 0.5  

RLNE 
(T = 0) 

2.054 0.415 0.393 0.430 Wavelet 

RLNE 
(T = 0.1) 

0.059 0.012 0.010 0.007 

RLNE 
(T = 0) 

2.054 0.282 0.273 0.245 Identity matrix 

RLNE 
(T = 0.1) 

0.059 0.010 0.007 0.022 

Figure 11 shows the reconstructed 1 13H- C  COSY spectra corresponding to the sampling pattern in 2 

Figure 8(b) with a sampling rate of 0.25. Some peaks are obviously lost in the reconstructed spectra 3 
using wavelets with both 1  norm and 0.5  norm minimization (Figure 11(c,e,g)). These lost peaks are 4 

found in the identity matrix-based reconstruction spectra (Figure 11(d,f,h)). With the 0.5  norm 5 

minimization, the intensities of the peaks marked with arrow in Figure 11(h) are more consistent to the 6 
fully sampled spectra in Figure 11(b) than those in the reconstructed spectra with the 1  norm 7 

minimization (Figure 11(d,f)). Smallest reconstruction error is achieved with the proposed identity 8 
matrix-based 0.5  norm minimization method (Table 2).  9 

All above simulation results demonstrate that wavelet-based reconstruction obviously induces the 10 
loss of some peaks in the crowded 1 13H- C  COSY spectrum and loss of some weak peaks in the less 11 

crowded 1 1H- H  COSY spectrum. Wavelet may even worsen the reconstructed spectra. Thus, it is not a 12 

good choice to use wavelet for the self-sparse spectra discussed in this paper.  13 

Figure 11. CS reconstruction of a 2D 1 13H- C  COSY spectrum using wavelet and identity 14 
matrix. (a,b) spectra reconstructed using fully sampled FID ( 1 128N   points) and 15 

undersampled FID with zero filling, respectively; (c,d) spectra reconstructed using 16 
wavelets and identity matrix with IST-based 1  norm, respectively; (e,f) spectra 17 

reconstructed using wavelets and identity matrix with PSOCA-based 1  norm, respectively; 18 

(g,h) spectra reconstructed using wavelets and identity matrix with PSOCA-based 0.5  19 

norm, respectively. 20 

 21 
                                                  (a)                                         (b) 22 
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      1 
(c)                                         (d) 2 

 3 
 (e)                                         (f) 4 

    5 
                      (g)                                        (h) 6 

Table 2. Reconstruction error of a 1 13H- C  COSY spectrum 7 

Methods Zero-filling IST 1  PSOCA 1  PSOCA 0.5  

RLNE 
(T = 0) 

1.687 0.547 0.533 0.541 Wavelet 

RLNE 
(T = 0.1) 

0.098 0.044 0.042 0.042 

RLNE 
(T = 0) 

1.687 0.422 0.405 0.343 Identity matrix 

RLNE 
(T = 0.1) 

0.098 0.033 0.031 0.027 
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4.2. Discussion on the computation 1 

Our simulation is running on a dual core 2.2 GHz CPU laptop with 3 GB RAM. The computational 2 

time for the algorithms using wavelet is two times of those using identity matrix, as shown in Table 3.  3 

Table 3. Running time for reconstruction of a NMR spectrum (unit: second) 4 

Zero-filling IST 1  PSOCA 1  PSOCA 0.5  
Methods 

1 1H- H  1 13H- C  1 1H- H 1 13H- C 1 1H- H 1 13H- C  1 1H- H  1 13H- C

Wavelet 0.1 0.1 11.1 56.8 8.5 70.4 29.1 221.2 

Identity matrix 0.1 0.1 5.9 27.5 5.7 31.8 16.0 105.6 

 5 
In the simulation, with the gradual increase of continuation parameter  , the previous solution was 6 

used as a ‘warm start’ for the next alternating optimization in the PSOCA. For a given  , with the 7 

increase of iterations in inner loop, the difference between reconstructed spectra decreases (see Figure 8 

12(a)), so does the error between the reconstructed spectrum and the fully sampled spectrum (see 9 
Figure 12(b)). The reconstruction error decreases when   becomes large in the outer loop. The 10 

computational time of 0.5  norm minimization in PSOCA is nearly four times as that of 1  norm 11 

minimization, as shown in Table 3.  12 

Figure 12. Numerical performance of PSOCA. (a) The 2  norm of difference between 13 

reconstructed spectra in the current and previous iteration when 122   in inner loop; (b) 14 

the reconstruction error RLNE of the reconstructed spectra when 122   in inner loop; (c) 15 

the reconstruction error RLNE versus the iterations in outer loop in PSOCA. 16 

  17 
(a)                                                                            (b) 18 

 19 
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 1 
(c) 2 

5. Conclusions and Future Work 3 

Random sampling in the indirect dimension is introduced to reconstruct 2D self-sparse NMR spectra 4 

under the CS framework. Based on the assumption of sparsity of NMR spectra, one may remove the 5 
aliasing by penalizing the 1  norm on the coefficients of the sparse representation of NMR spectra. 6 

Considering the sparsity and the coherence property, we demonstrate that wavelet transform may 7 

reduce the peak height and result in lost of peaks. Thus, wavelet is not necessary and even worsens the 8 
reconstruction of self-sparse NMR spectra. With the  0.5p p   norm minimization, the quality of 9 

reconstructed spectra can be further improved. 10 

However, how to define the meaningless peaks depends on applications and a qualitative analysis of 11 

self-sparse NMR spectra is needed in order to satisfy the requirement of CS. By defining regularity of 12 

ideal Lorentizian peaks with aspect to typical vanishing moment wavelet basis, it is possible to give a 13 

bound for the approximation error of Lorentizian peaks in wavelet representation. Thus, one may 14 

quantify the sparsity of spectra composed of ideal Lorentizian peaks using wavelet. Another way is to 15 

set up a database and analyzes the sparsity of the meaningful peaks based on the prior knowledge of 16 

chemists. Since the peak height may be reduced in the wavelet-based reconstruction and this reduction 17 

depends on the crowd of peaks, it is expected to give a quantitative analysis on the effect of 18 

using/skipping wavelet transform by setting up a simulated spectrum or spectrum from real chemical 19 

substance, in which the crowd of peaks and the fixed relative height of peaks are pre-defined in the 20 

spectrum.  21 

Besides, based on the coherence property in CS, the analysis of the performance of different random 22 

sampling schemes, e.g., Poisson disk sampling, may lead to further reduction of sampling rate and 23 

reconstruction error. Extension of the proposed method on higher dimensional NMR spectra is worth 24 

investigating.  25 
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