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Abstract 

Undersampling k-space is an effective way to decrease acquisition time for MRI. 

However, aliasing artifacts introduced by undersampling may blur the edges of 

magnetic resonance images, which often contain important information for clinical 

diagnosis. Moreover, k-space data is often contaminated by the noise signals of 

unknown intensity. To better preserve the edge features while suppressing the aliasing 

artifacts and noises, we present a new wavelet-based algorithm for undersampled MRI 

reconstruction. The algorithm solves the image reconstruction as a standard 

optimization problem including a  data fidelity term and  sparsity 

regularization term. Rather than manually setting the regularization parameter for the 

 term, which is directly related to the threshold, an automatic estimated threshold 

adaptive to noise intensity is introduced in our proposed algorithm. In addition, a prior 

matrix based on edge correlation in wavelet domain is incorporated into the 

regularization term. Compared with non-linear conjugate gradient descent algorithm, 

iterative shrinkage/thresholding algorithm, fast iterative soft-thresholding algorithm, 

and the iterative thresholding algorithm using exponentially decreasing threshold, the 

proposed algorithm yields reconstructions with better edge recovery and noise 

suppression. 
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1. Introduction 

MRI, a widely used analytical tool for medical diagnosis, is burdened by slow 

data acquisition. An effective way to speed up MRI is to undersample k-space. 

However, undersampling violates the Nyquist-Shannon sampling theorem, resulting 

in aliasing artifacts in reconstructed magnetic resonance (MR) images. In addition, 

k-space is often contaminated by signals due to the coils and eddy currents in the 

patient [1]. Both the artifacts and the noise signals will affect the clarity of the MR 

image edges, which usually contain significant information for pathological diagnosis. 

For instance, the edges and textures in brain images are useful for diagnosis and 

research of schizophrenia and Alzheimer’s disease [2]. The degree of liver fibrosis, 

which can be measured by MR image texture analysis, is a useful predictive factor for 

the occurrence of hepatocellular carcinoma [3]. The tumor margin, caliber of vessel, 

and the vessel border are suggestive of extramural vascular invasion, which is a 

pathologic feature predictive of distant relapse and poor survival among patients with 

colorectal cancer [4]. Therefore, undersampled MRI reconstruction with good edge 

recovery is important for some clinical applications, such as the applications 

mentioned above. 

Compressed sensing (CS) proposed by Candès et al. [2] and Donoho [3] is a new 

sampling and compression theory. CS reconstructs the 1N  signal  from far 

fewer 

x

M ( M N ) measurements y  ( y Φx ,  is a Φ M N  measurement 

matrix) than Nyquist sampling rule by exploiting the sparsity of signal  in a certain x



transform domain. 

Undersampled MRI reconstruction is a special case of CS where the 

measurements are Fourier coefficients (k-space samples) for the Fourier encoding 

scheme. If the MR image vector  can be sparsely represented by a transform  

with coefficient vector  ( ), then  can be accurately reconstructed from a 

small subset of k-space data by solving the  norm minimization problem 

x

w

Ψ

w x Ψ x

0

0min ,  . . = us t
w

w y F Ψw ,                       (1) 

where , and  is a F UFu U M N  undersampling matrix, F N N  represents the 

forward Fourier transform. 

Unfortunately, the  norm is not convex, and the computational complexity of 

the optimization is non-polynomial (NP) hard [7]. To overcome this difficulty, one 

option is to optimize with the ,  ( 0

0

1 p 1p 

1

) [8, 9], or smoothed  norm 

[10-12] instead. However, the  ( 0

0

p p 

1

0

) and smoothed  norm minimization 

could sink into local minima, and  norm minimization requires more 

measurements for exact reconstruction [5, 6]. The detailed discussion is beyond the 

scope of this work. In this paper, we utilize the widely used  norm minimization to 

enforce the sparsity of solutions by replacing the  norm 

0

1

1min ,  . . 
w

w y F Ψwus t .                    (2) 

As measured k-space data  is often contaminated by noise, the data 

consistency in Eq. (2) is violated. The reconstruction is then obtained by solving 

y

1min ,  . . ,us t 2  
w

w y F Ψw                (3) 



where   is the error tolerance and controls the reconstruction fidelity [13]. 

The constrained optimization problem in Eq. (3) can be written in the Lagrangian 

form 

2

2

1
min  ,

2
 

w
y F Ψw wu 1                   (4) 

where   is a regularization parameter governing the tradeoff between the 

reconstruction error and its sparsity. 

A successful application of CS requires the sparsity of the desired MR image. 

Most MR images do show sparsity in certain transform domains. Angiograms, for 

instance, are structurally simple and sparse in identity transform domain [13]. More 

complicated MR images can be sparsified by total variation [14], wavelet (WT) [13], 

contourlet [15, 16], or some more complicated transform, such as combined 

sparsifying transforms [17], and dictionary with more than one basis function [18]. 

Image edges exhibit high spatial correlation in the WT domain, both within and 

across scales, and therefore can be located very effectively [19]. According to CS 

MRI requirements in [13], aliasing artifacts introduced by ideal sampling patterns for 

k-space undersampling should be incoherent (noise like, rather than edge feature-like) 

in the sparsifying transform domain. If sampling patterns meet this requirement, the 

correlation can be used as a helpful tool to discriminate edges from aliasing artifacts. 

Thus, good reconstruction of edges and suppression of aliasing artifacts can be 

expected. 

In this paper, we present a WT-based edge correlation incorporated algorithm 

(ECIA) for undersampled MRI reconstruction. A prior matrix, which incorporates the 



inter- and intra-scale edge correlation in WT domain into Eq. (4), is designed to 

modulate the wavelet coefficients. ECIA modifies the iterative thresholding algorithm 

using exponentially decreasing threshold (IT-EDT) [15] to make use of the prior 

matrix. In addition, as the k-space data is often contaminated by noise of unknown 

intensity, it is sometimes difficult to set the appropriate value of the regularization 

parameter   in Eq. (4). In ECIA, the value of regularization parameter is 

automatically assigned according to an estimated lowest threshold, which is 

calculated according to the noise intensity. 

This paper is organized as follows. In Section 2, we first give an introduction of 

undecimated WT and IT-EDTC algorithm. Then the proposed algorithm is presented, 

including the calculation of the estimated lowest threshold and the prior matrix design. 

In Section 3, we use the ECIA for undersampled MRI reconstructions. The 

performance of ECIA is compared with non-linear conjugate gradient descent 

algorithm (NLCG) [13], iterative shrinkage/thresholding algorithm (IST) [20, 21], fast 

iterative soft-thresholding algorithm (FISTA) [22], and IT-EDT [15]. The effect of 

estimated lowest threshold on noise suppression, the reconstruction time, and the 

empirical convergence of the algorithm are also reported. The discussion and 

conclusions part are given in Section 4. 

 

2. WT-based ECIA algorithm for MRI reconstruction 

2.1. Undecimated WT 



Traditional orthogonal WT reduces resolution by one-half at each level via 

subsampling data. It is not easy to follow the evolution of edges through scales using 

orthogonal WT. In addition, as the orthogonal WT produces fewer coefficients at 

coarse scale, edges within coarser scales are difficult to track. 

An alternative referred as undecimated WT has been developed. Undecimated 

WT eliminates the decimation step in the orthogonal WT transform. It is redundant 

and has the same number of coefficients at all scales, which allows edge analysis 

pixel by pixel. This property is convenient for investigation of the edge correlation in 

inter- and intra-scales. What is more, the redundancy of the sparsifying transform has 

the potential benefit to improve the reconstruction quality [15]. Thus à trous WT [24], 

a computationally efficient and widely used undecimated WT, is employed to sparsify 

the MR image in this work. 

 

2.2. WT-based IT-EDT for CS MRI 

The classic interpretations of iterative thresholding (IT) for solving  norm 

minimization were reported previously [21]. For theoretic analysis, Herrity and 

co-workers [24] employed hard IT to demonstrate that one could recover the k-term 

representation of the original signal up to any prescribed error tolerance under certain 

conditions. Bredies and Lorenz [25] proved that soft IT converged with a linear rate 

once the underlying operator satisfied the finite basis infectivity property or the 

minimizer possessed a strict sparsity pattern. Inspired by these works, Qu and 

co-workers [15] applied IT-EDT, which was originally used for NMR spectra 

reconstruction [26], to solve Eq. (4). In addition to the IT-EDT, there are also some 

1



other soft-thresholding algorithms, such as IST [20, 21] and FISTA [22]. IST and 

FISTA seek the solution to Eq. (4) by applying the iteration step 

1

1
( ( )

t

H
t t uS

c  w w F Ψ r)

r

,                     (5) 

where  is the residual in k-space, 
2

( )H
u uc  F Ψ F Ψ , t c

  . 

As our proposed algorithm is modified on the basis of IT-EDT, we will give the 

pseudo-code of IT-EDT, which is implemented by the following steps. 

Algorithm IT-EDT 

(1) Initialize the relative error tolerance eR , 0t , maximal iteration times maxt , 

, r0 [0,0, ,0]w  T y ,   ( 0 1  ), ; 0 max(( ) )H
u 0F Ψ r

(2) While 2 2 y F Ψw yu t eR  and  maxt t  

(3)     ; 1 (( ) )
t

H
t t uS  w w F Ψ r

(4)     1u tr y - F Ψw ; 

(5)     1  t t ; 

(6)     1 t t ; 

(7) End While. 

In line (3),  is a soft-thresholding operator with ( )
t

S  t  as the threshold, 

( )H
uF Ψ  is the adjoint operator of . uF Ψ

We find that IT-EDT employs a threshold t  decreasing exponentially with 

iteration count, which is somewhat similar to the continuation strategy adopted in the 

methods of gradient projection for sparse reconstruction (GPSR) [27], fixed-point 



continuation (FPC) [28], and sparse reconstruction by separable approximation 

(SpaRSA) with continuation [29]. Instead of solving Eq. (4) directly with  , the 

continuation strategy obtains the final solution using a decreasing sequence 

1 2 1{ , , , , }t t       ( 1 2 1t t        

t

 ) as the regularization parameter. It 

was proved that continuation strategy yielded a fast convergence [28, 29]. In IT-EDT, 

however, when the threshold decreases from   to 1t  , one iteration in IT-EDT may 

not obtain an optimal solution to the current problem in the problem sequence. 

Inspired by the works in Refs. [28] and [29], we embed IST as an inner-loop in 

IT-EDT. In each IST inner-loop, as the threshold is determined by t
t c

  , 

1 2 1{ , , , , }t t    

1 2{ , , ,t tc c c c

  is therefore equivalent to a threshold incorporated sequence 

1, }      . The modified IT-EDT is referred as IT-EDT with 

continuation (IT-EDTC), and is given by the following pseudo-code. 

Algorithm IT-EDTC 

(1) initialize the relative error tolerance eR , maximal outer-loop and inner-loop 

iteration times maxoutt , maxint , inner-loop iteration count 1t  , outer-loop 

iteration count 1outt  , ,0]T , r y ,   ( 0 11 [0,0,w    ), 

) )H
uΨ r ; 1 max((  F

(2) Outer-loop: While 2 2 y F Ψw yu t eR  and out maxoutt t  

(3)      Inner-loop: While  maxint t  

(4)           1

1
( ( ) )H

uΨ r ; 
tout

t tS
c  w w F



(5)           1u tr y - F Ψw ; 

(6)          1t t  ; 

(7)      End While (inner-loop ends); 

(8)      1 tw w ; 

(9)      1t  ; 

(10)      1out outt t   ; 

(11)      1 ; out outt t 

(12)  End While (outer-loop ends). 

 

2.3. The Proposed Algorithm 

 For the traditional CS-MRI algorithms using soft-thresholding to solve Eq. (4) 

with noisy measurements, such as IST and FISTA, the regularization parameter   

needs to be set (usually manually) in advance. Some algorithms, such as L-curve [30], 

can be used to set this parameter, but need to solve the problem several times and then 

it is possible to find a good regularization parameter. The proposed ECIA presents one 

way to stop the iteration by estimating a lowest threshold low  based on the noise 

estimation in the WT subbands, and the algorithm stops when the threshold reaches 

low . Similar to IT-EDTC, ECIA also uses IST as the inner-loop, therefore the 

regularization parameter lowc   is automatically obtained according to low . 

In addition, to obtain better edge recovery, ECIA uses the following model by 

plugging a correlation matrix  into Eq. (4), B



2

2

1
min  

2
 

w
y F Ψw Βwu 1 ,                (6) 

where  is a binary diagonal matrix containing the inter- and intra-scale correlation 

of edges in the WT domain. Below we will explain the estimation of lowest threshold 

and the design of correlation matrix  in detail. 

B

B

  

2.3.1 Estimation of Lowest Threshold 

In the recent years, plenty of researches have addressed the development of 

statistical models for image denoising. Accurate statistical model, designed directly 

on images or their transform coefficients, is critical for the denoising results. Sendur 

and Selesnick [31] proposed a WT-based bivariate shrinkage algorithm with local 

variance estimation for image denoising. The algorithm models the statistical 

dependency of the wavelet coefficients, and defines a nonlinear thresholding function 

(shrinkage function) using Bayesian estimation theory. Inspired by this work, we 

derive the estimated lowest threshold low  from the shrinkage function. 

According to the algorithm in Ref. [31], suppose  ,Wk
s m n  is a noise-corrupted 

WT coefficient in the th subband at scale  with the spatial location  ,  k s ,m n

 2
( , )m n  is the marginal variance of coefficient  in a local neighborhood, ( , )m nWk

s

2  medi ( ) 0.6745Wsan  is the noise variance estimated from the wavelet 

coefficients, then the estimation from  ,m nWk
s  is calculated by the following 

bivariate shrinkage function 



 
   

   


2
2 2

1

2 2

1

3
( , , )

( , )ˆ , ,
, ,

k k
s s

k k
s s

k k
s s

f m n m n
m n

m n m n
m n m n






 
 



W W
W W

W W
 ,             (7) 

where function ( )f  is defined as 

0, if  0

, otherwise
( )







x

x
f x                             (8) 

Empirically, we find that for most WT coefficients, 1( , ) / ( , )W Wk k
s sm n m n  

varies within a small range, as shown in Fig. 1B, and therefore can be approximately 

viewed as a constant 1( , ) / ( , )k k
s sm n m n  W W . After the following manipulations, 

Eq. (7) can be rewritten as a soft-thresholding function 
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k
s

k
s

k
sm n
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m n

S m n
  





 




W

W

W

       (9) 

where with 2 23 ( ( , ) 1  )m n  as the threshold, therefore the lowest threshold 

low  is then estimated with 

2 2min( 3 ( )1   ) low .               (10) 



 

Fig. 1. (A) Original image. (B) Histogram of 1( , ) / ( , )W Wk k
s sm n m n . 

 

2.3.2. Correlation Matrix Design 

The design of matrix  implies the following beliefs. (a) The edge features 

usually have signal peaks across different WT scales. (b) Within each WT scale, the 

coefficients corresponding to edge features tend to cluster together and show a spatial 

continuity [19]. The former and the latter reflect the inter- and intra-scale 

dependencies of edge features respectively. If we can discriminate edges from 

non-edge WT coefficients in matrix  using the inter- and intra-scale dependencies, 

reconstructions with better edge recoveries can be expected. Correlation matrix  is 

designed in the context of IT-EDTC algorithm, as shown in Fig. 2. 

B

B

B

 

Fig. 2. The design of correlation matrix . B

 



Suppose , 1
k
s tW  is WT coefficients obtained from the soft-thresholding (see line 

(4) of IT-EDTC pseudo-code), with  and  being the subband and scale index. If 

we regard the WT coefficients with amplitude larger than the threshold as the signal 

peaks of edges, then these peaks can be labeled out using the nonzero entries in 

k s

, 1
k
s tW . In Fig. 2, let the white squares in , 1

k
s tW  denote the zero entries, and the black 

squares the nonzero entries. The signal peaks is therefore labeled in binary matrix Lk
s  

by 

, 11, if ( , ) 0
( , )

0, otherwise
 

 


W
L

k

s tk
s

m n
m n                   (11) 

As the inter-scale edge dependency usually involves in the two adjacent WT 

scales [19], we therefore build a binary inter-scale correlation matrix ,
k
s interB  labeling 

the edges by 

1
,

1, if ( , ) 1 and ( , ) 1
( , )

0, otherwise
 

 


L  L
B

k k

s sk
s inter

m n m n
m n            (12) 

As for the intra-scale dependency, we use the number of entries in each 

eight-connected nonzero regions of , 1
k
s tW  to measure the spatial continuity of the 

edges. The eight-connected nonzero region is a group of nonzero entries in which 

each member can touch at least one member at its adjacent vertical, horizontal, or 

diagonal positions. The more entries the eight-connected nonzero regions contain, the 

better they exhibit spatial continuity. For instance, in Lk
s  of Fig. 2, there are 3 

eight-connected regions with 1, 2, and 9 nonzero entries respectively, as labeled in 

matrix k
sE . To select the regions with better spatial continuity, we design a guiding 



map k
s,intraB  by 

1, if 
( , )

0, if 

( , )

( , )





 




E
B

E

k
k s
s,intra k

s

m n
m n

m n
                 (13) 

where   is a positive integer controlling the spatial continuity of the selected edges. 

For instance, when   is set to 9 in Fig. 2, only the eight-connected region with 

strongest spatial continuity is labeled out in k
s,intraB . 

To take both inter- and intra-scale dependencies into account, the correlation 

matrix k
sB  is therefore defined as 

1, if 
( , )

0, otherwise

( , ) 1 and ( , ) 1

  



B B
B

k k

s,inter s,intrak
s m n

m n m n
       (14) 

Then the correlation matrix  is built by B

1 2 3 1
1 1 1( ({ , , , , , })k k

s sdiag vec B B B B B )B ,               (15) 

where  is an operator stacking a matrix into a column vector,  creates 

a diagonal matrix with a vector down the diagonal. Fig. 3 shows an example of 

(vec ) ( )diag 

Bk
s  

for a fully sampled image, where image edges are effectively located in the guiding 

matrix. 

 

Fig. 3. (A) Original image. (B) The guiding maps for the 3rd scale of à trous WT. The 

decomposition level is 4. 

 



2.3.3. The Proposed Algorithm 

Once obtaining the estimated lowest threshold low  and the correlation matrix 

, the proposed ECIA algorithm is implemented according to the following steps. B

Algorithm ECIA 

(1) Initialize the maximal outer-loop and inner-loop iteration times maxoutt , maxint , 

inner-loop iteration count 1t  , outer-loop iteration count 1outt  , 

, r1 [0,0, ,0]Tw  y ,   ( 0 1  ), 1)]L1 [ (1), (2), , (3   θ  , 

where ( ) i  is the maximal amplitude of different subbands of  )H
uF Ψ r , 

L  is WT decomposition levels; 

(

(2) Outer-loop: While (1), (2), , (3 1)     lowL  and out maxoutt t  

(3)      estimate low  according to Eq. (10); 

(4)      Inner-loop: While  maxint t  

(5)           1

1
( ( ) )H

uΨ r ; 
tout

t tS
c  w w F

(6)           update B  according to Eqs. (11)-(15); 

(7)           ; 1 1t t w Bw

(8)           1u tr y - F Ψw ; 

(9)           1t t  ; 

(10)      End While (inner-loop ends); 

(11)      1 tw w ; 

(12)      1t  ; 

(13)      low1 max( , )t t    ; 



(14)      1 ; out outt t 

(15)  End While (outer-loop ends). 

 

2.3.4. Improvement on the Speed of ECIA 

 Compared with IT-EDTC, two factors will slow down the ECIA. (a) During 

lowest threshold estimation, the calculation of noise variance 2  requires sorting the 

coefficients of undecimated WT. (b) As for k
sL  of large size, searching the 

eight-connected nonzero entries is time-consuming. 

 In Ref. [31], the noise variance 2  was only calculated at the finest wavelet 

scale. Similarly, we estimate low  only from the diagonal subband of the finest scale 

to reduce the time for coefficients sorting. On the other hand, we divide matrix k
sL  

into small patches and search the eight-connected regions in each patch. 

 

3. Simulation results 

3.1. Edge recovery 

Many sampling patterns are proposed for CS MRI. Non-Cartesian sampling 

patterns, such as radial and spiral sampling patterns, were used for MRI 

reconstruction in [32, 33]. However, Cartesian sampling pattern [13] is the most 

popular trajectory for k-space data acquisition. In simulations, variable density 

Cartesian sampling pattern [13] with the rate of 0.4 (40% measurements), as shown in 

Fig. 4A, is used for k-space sampling. The fully sampled MR images for simulations 



are obtained from a 1.5 T GE MRI scanner with a fast-recovery fast spin echo 

(FRFSE) T2 weighted sequence, as shown in Fig. 4B and D (Fig. 4B: TR/TE = 

4020/103 ms, 24×24 cm field of view, 7 mm slice thickness; Fig. 4D: TR/TE = 

4000/102 ms, 24×24 cm field of view, 6 mm slice thickness). Gaussian white noise 

with variance 0.02 is added to both the real and imaginary parts of k-space data 

respectively. 

 

Fig. 4. (A) Variable density Cartesian sampling pattern with 0.4 sampling rate. (B) 

and (D) are fully sampled MR images. (C) and (E) are the zero filling undersampled 

MR images of (B) and (D) using the sampling pattern in (A). 

 

The performance of the proposed ECIA is compared with NLCG, IST, FISTA, 

and IT-EDTC algorithms. Reconstruction results by different algorithms are given in 

Figs. 5 and 6. À trous WT with spline biorthogonal filters and four decomposition 

levels is applied. The decreasing factor for IT-EDTC and ECIA is 0.5  . Fig. 5F-J 

and Fig. 6F-J indicate that ECIA has the weakest edge features left in the difference 

image. Compared with other algorithms, ECIA achieves the most precise edge 

reconstruction. 



 

Fig. 5. (A)-(E) are the reconstructions of Fig. 4B by NLCG, IST, FISTA, IT-EDTC, 

and ECIA, respectively. (F)-(J) are the difference images between fully sampled MR 

image and (A)-(E) with the gray scale of [0,50]. 

 

 

Fig. 6. (A)-(E) are the reconstructions of Fig. 4D by NLCG, IST, FISTA, IT-EDTC, 

and ECIA, respectively. (F)-(J) are the difference images between fully sampled MR 

image and (A)-(E) with the gray scale of [0,50]. 

 



3.2. Noise suppression 

For quantitative comparisons of noise suppressions between ECIA and other 

algorithms under different noise levels, signal-to-noise ratio (SNR) between 

reconstructions and fully sampled MR images are computed. SNR is defined as 

22

10 2 2
10 log ( )   x x x xrecSNR , where  is the fully sampled MR image, x x  

is the mean value of , and  is the reconstruction result. The curves of SNR 

versus noise variance are given in Fig. 7 for the same MR image in Fig. 5. It indicates 

that ECIA yields SNR with 2-6 dB higher than those of NLCG, IST, FISTA, and 

IT-EDTC. 

x xrec

 

Fig. 7. Curves of SNR versus noise variance of different algorithms. 

 

To show the value of low  under different noise levels, the curve of low  versus 

noise variance are presented in Fig. 8A. It indicates that low  increases with the 

growth of noise variance. When heavy noise is added to the k-space, more WT 

coefficients are submerged into the noise, in which case a higher low  will decrease 

the introduction of significant noise. To show the accuracy of low  estimation for 



noise suppression, Fig. 8B and C give curves of SNR between reconstruction results 

of ECIA and fully sampled MR image under different low . In Fig. 8B and C, 

Gaussian noise with variance 0.02 and 0.05 are added to k-space respectively, and we 

find that highest SNRs are both achieved near the corresponding low  estimated 

under the two different noise levels in Fig. 8A. 

 

Fig. 8. (A) The curve of estimated lowest threshold versus noise variance. (B) The 

curve of SNR versus lowest threshold, Gaussian noise with variance 0.02 is added. (C) 

The curve of SNR versus lowest threshold, Gaussian noise with variance 0.05 is 

added. 

 

3.3. Reconstruction time comparison 



 In this section, we report results of experiments aiming at comparing the speed of 

ECIA with other algorithms. Fig. 4B and D are used for experiments. All the 

experiments are performed using MATLAB, on a computer equipped with an Intel 2.4 

GHz processor, with 2.0 GB of RAM, and Windows XP system. All the algorithms 

are carried out until their SNRs stabilize. Table 1 gives the average CPU time of 5 

instances for each experiment. 

Table 1 Reconstruction time comparison between different algorithms 

Algorithms NLCG IST FISTA IT-EDTC ECIA 

Fig. 4B 948 5120 690 334 402 
CPU times (s) 

Fig. 4D 894 5085 667 329 403 

 

We can observe that the computations of IT-EDTC and ECIA are fast, while IST 

takes more time than other algorithms. Due to the estimation of low  and searching 

the eight-connected nonzero entries, the reconstruction time of ECIA is about 20% 

more than that of IT-EDTC, which is acceptable considering the 2-3 dB SNR 

improvement compared with IT-EDTC in Fig. 7. 

 

3.4. Empirical convergence of the objective function 

 In Fig. 9, we plot the evolution of objective function in Eq. (6) versus outer-loop 

iteration number. Fig. 4B is used for the experiment, and the maximal IST inner-loop 

iteration number  is set as 10. As the estimation of lowest threshold maxint low  is 



unknown beforehand, we first run the algorithm and record final estimated low , the 

curve is then obtained with the recorded low  when we run the algorithm for the 

second time. From Fig. 9, we observe that the objective function decreases and 

gradually stabilizes when a threshold is fixed within the inner-loop iterations. 

 

Fig. 9. The evolution of objective function versus outer-loop iteration number. 

 

4. Discussion and conclusions 

In this work, we propose an algorithm named ECIA. It automatically assigns the 

value of regularization parameter according to an estimated lowest threshold adaptive 

to the noise intensity, and incorporates a prior matrix based on edge correlation in the 

WT domain into the objective function. Simulations demonstrate that ECIA 

reconstructs MR images with better noise suppression and edge recovery compared 

with NLCG, IST, FISTA, and IT-EDTC algorithms, 2-6 dB improvement on SNR is 

achieved for the given MR images.  

In addition, CS assumes that the signal of interest is sparse in a particular 



transform domain. We only consider the prior information of edge correlation in the 

inter- and intra-scale for the WT transform. One possible extension may include 

designing models to make use of different prior information of other popular 

sparsifying transforms, such as contourlet, and discrete cosine transforms. In addition, 

we also expect our model be integrated with the non-convex optimization, e.g. 

replacing  norm with   ( 01 p 1 p ) norm or smoothed  norm. 0
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