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Abstract—Objective: Multi-shot interleaved echo planer 
imaging (Ms-iEPI) can obtain diffusion-weighted images (DWI) 
with high spatial resolution and low distortion, but suffers from 
ghost artifacts introduced by phase variations between shots. In 
this work, we aim at solving the ms-iEPI DWI reconstructions 
under inter-shot motions and ultra-high b-values. Methods: An 
iteratively joint estimation model with paired phase and 
magnitude priors is proposed to regularize the reconstruction 
(PAIR). The former prior is low-rankness in the k-space domain. 
The latter explores similar edges among multi-b-value and 
multi-direction DWI with weighted total variation in the image 
domain. The weighted total variation transfers edge information 
from the high SNR images (b-value=0) to DWI reconstructions, 
achieving simultaneously noise suppression and image edges 
preservation. Results: Results on simulated and in vivo data 
show that PAIR can remove inter-shot motion artifacts very 
well (8 shots) and suppress the noise under the ultra-high b-
value (4000 s/mm2) significantly. Conclusion: The joint 
estimation model PAIR with complementary priors has a good 
performance on challenging reconstructions under inter-shot 
motions and a low signal-to-noise ratio. Significance: PAIR has 
potential in advanced clinical DWI applications and 
microstructure research. 

Index Terms—multi-shot, DWI, high-resolution, ultra-high b-
value, reconstruction. 

I. INTRODUCTION 

IFFUSION-WEIGHTED image (DWI) is a non-invasive tool 
for imaging water molecules diffusion [1]. It has been 

widely employed in the clinical diagnosis of acute stroke [2, 3] 
and cancer [4-6] and the scientific research of brain fiber 
tractography [7, 8]. To achieve high spatial resolution and low 
distortion DWI, multi-shot interleaved echo planer imaging has 
become increasingly popular [6, 9]. This imaging scheme 
samples different segments of k-space uniformly along phase 
encoding direction in different shots. However, during the data 
acquisition of each shot, subject or physiological motions are 
easily introduced, leading to strong phase variations of each 
shot image and finally producing ghosting image artifacts [10].  

Phase variations can be corrected by navigator-based [10-13] 
and navigator-free methods [14-21]. The former requires extra 
navigator echo acquisition, and geometric mismatches between 
the navigator echo and target image echo need to be 
compensated [11, 13]. Navigator-free methods have been 
attached with increasing attention recently [14-21]. They can be 
classified into three categories: implicit phase [14-17], explicit 
phase [18, 22], and joint estimation of phase and magnitude 
[19-21]. 

Implicit phase reconstructions recover the image of each shot 
and then combine them into a magnitude image by the sum of 
squares (SOS) [14-17]. These approaches avoid the estimation 
of the phase of each shot image, i.e., the shot phase. Recently, 
inspired by models and priors in fast magnetic resonance 
imaging [23, 24], many state-of-the-art methods exploit low-
rank properties in multi-shot interleaved echo planer imaging 
DWI. In MUSSELS [15], cross-shot annihilating filter relations 
deduced from smooth phase modulations are exploited, and the 
missing samples are interpolated from multi-shot data by a 
structured low-rank matrix completion formulation [15]. In 
PLRHM [17], intra-shot annihilating filter relations are 
employed for low-rank matrix construction. 

Explicit phase methods have two steps. Firstly, they estimate 
the each shot phase from individual shot image using parallel 
imaging such as SENSE. Then, all shot data are incorporated to 
build an integrated reconstruction problem for estimation of 
magnitude image, assuming that different shot images share the 
same magnitude [18]. A representative explicit phase method is 
MUSE. Compared with implicit phase reconstruction, once the 
shot phase is estimated, the explicit phase strategy decreases the 
number of unknowns, which improves matrix inversion 
conditioning [18, 19]. This strategy can bring benefits in low 
signal-to-noise ratio (SNR) imaging scenarios, such as high b-
value DWI [18]. 

However, an accurate phase estimation is not easy for 
explicit phase reconstruction. The step-by-step estimation of 
shot phase and magnitude in MUSE can hardly get reliable shot 
phases, when the shot number is high, say eight [15]. The low-
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quality shot phases will decrease the final reconstruction 
performance. 

The joint estimation methods [19-21] iteratively solve the 
shot phase and magnitude image. POCS-ICE is one of 
representative method, which could reliably estimate shot phase 
in both Ms-iEPI and multi-shot spiral DWI [20]. PR-SENSE 
introduces total variation (TV) as a regularization for the 
reconstruction of magnitude image in the iterations [21]. 

In this work, we propose a joint estimation model PAIR with 
paired phase and magnitude priors to regularize the shot phase 
and magnitude reconstruction, respectively (Fig. 1). The former 
prior is derived from the smoothness of the shot phase and 
enforced with low-rankness in the k-space domain. The latter 
explores similar edges among multi-b-value and multi-direction 
DWI with weighted total variation in the image domain. The 
weighted TV transfers edge information from the high SNR 
images (b-value=0) to DWI reconstructions, achieving 
simultaneously noise suppression and image edges preservation. 

Extensive simulated and in vivo results show that PAIR can 
remove inter-shot (8 shots) motion artifacts very well even 
when the partial shot data are corrupted; suppress the noise 
significantly under the ultra-high b-value (4000 s/mm2); obtain 
high-fidelity reconstruction under both uniform and partial 
Fourier undersampling; achieve nice robustness on multi-
vendor multi-center data. 

II. RELATED WORKS 

A. Shot phase constrained low-rankness in PLRHM 

 The j-th shot DWI image Ij can be represented as [18]: 
,j j jI P m = P P m                               (1) 

where 
jP   is the motion-induce phase of j-th shot, P   is the 

background phase of DWI images, Pj is a diagonal matrix, 
representing the shot phase, and m is the magnitude image 
shared by all shot images [18]. 

In our previous work PLRHM [17], we get: 

* * ,j j j j P P m P P m 0                                 (2) 

where superscript * is the complex conjugate. 
Substitute shot image j jI = P m  and the complex conjugate 

of the shot image  
* * * *

j j j j
I = P m = P m = P m  into Eq.(2), we 

get: 

* *= .j j j jP I P I                                         (3) 

Transform the left and right of Eq. (3) into k-space: 
* *= ,j j j j P X P X                                    (4) 

where   is convolution, 
*N M

j X   and *N M
j P   are the 

Fourier transform of Ij and Pj. M and N are the columns and 
rows of k-space. Rewrite Eq. (4) into a multiplication form: 

 

 

*

,

*

,
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j j
p q
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p q x p y q

p q x p y q





   
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




                    (5) 

where (x, y) is the coordinate of Xj,  0,x N  and  0,y M . 

 ,p q   is the coordinate of jP  and   is the region where 

( , )j p qP  is nonzero. 

The nonzero value of jP  in k-space is concentrated in the 

limited support due to the smoothness of Pj in the image. Thus, 
  can be approached by a radius R circle region R . With this 

approximate representation, Eq. (5) holds an annihilation 
relationship [23]: 

 
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*

,

*

,

( , ) ( , )

( , ) ( , ) 0,

R

R

j j
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j j
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

   

   





X P

X  P








                  (6) 

Split the real and imaginary parts of Eq. (6), we get: 

 
 

Fig. 1. Iteratively updated shot phase and magnitude images in PAIR. Low-rank and weighted total variation are used as a pair 
of complementary priors to facilitate phase and magnitude image reconstruction. Note: TV is short for total variation. 
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     (7) 

where the superscript r and i represent real and imaginary part, 
respectively. The real and imaginary part of Eq. (7) could be 
split into two equations (Fig. 2), and the matrix multiplication 
is: 

ˆ ˆ( ) ( ) ,

ˆ ˆ( ) ( ) ,

r r r i i i
j j j j j j

i i r r r i
j j j j j j
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   (9) 

where    1,e N R M R       and  1, Rf N , NR is the 

number of elements in R . Thus, we get s  the operator that 

converts a single shot k-space data into a Hankel matrix (in the 
under-braces and Fig. 2). The Eq. (8) implies that this Hankel 
matrix is rank-deficient [23]. 

 
ˆ ˆ

.
ˆ ˆ

r rr r i i
j jj j j j

j i i r ri i
j j j jj j

   
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P PX X X X
X 0

X X X XP P
 (10) 

Moreover, Hankel matrix  jX  lifted from shots can be 

concatenated into a larger Hankel matrix  X : 

     1[ , ].JX X X                          (11) 

PLRHM employs the above phase constrained low-rankness 
to build an implicit phase reconstruction model [17]: 

21

*F
1 1

( ) min
2j

H J

h h
h j

PLRHM
 

 

  
X

Y C X X ，      (12) 

where *MN J
h Y   denotes the sampled and vectorized h-th 

channel multi-shot k-space data, *MN MN
h C   is the h-th 

channel coil sensitivity maps,  is the regularization parameter 

and 
*
  is the nuclear norm.  is an under-sampling operator 

that fills zeros on non-acquired data points,   is the Fourier 

transform operator. 1  is the inverse Fourier transform 

operator. 

III. PROPOSED METHOD 

 In this work, we propose a joint estimation model of shot 
phase and magnitude in an alternating fashion for ms-iEPI DWI 
reconstruction. The paired shot phase (P) and magnitude (m) 
priors is incorporated to regularize the updates of shot phase 
and magnitude, respectively. The whole process is summarized 
in Fig. 1. 

A. Joint estimation model with shot phase prior (PHASE) 

Firstly, we improve PLRHM into a joint estimation model 
PHASE by separating Ij into shot phase Pj and magnitude m. 
The shot phase smoothness prior in PLRHM is similarly used 
in PHASE to constrain the shot phase update. 

2

F *,
1 1 1

( ) min
2

H J J

hj h j j
h j j

PHASE


  

  
P m

Y C P m P m ，  (13) 

 
 

Fig. 2. The flowchart of building Hankel matrix in PLRHM and PAIR. Xj is the sampled j-shot k-space data. The trajectory 
of the black sliding window is from top to bottom and left to right, while the blue sliding window is from bottom to top and 
right to left. 
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where MN
hj Y   donates the sampled h-th channel and j-th 

shot k-space data. 
The alternating fashion of PHASE brings two improvements 

over PLRHM. Firstly, when the shot phases are estimated and 
combined with sensitivity maps, all shot data can be 
incorporated together to estimate magnitude. This is a similar 
multiplexed sensitivity-encoding strategy as MUSE, which 
may help suppress the noise [18] (Fig. 3). Secondly, the prior 
that all shot images share the same magnitude are utilized 
explicitly in PHASE, while shot images in PLRHM have 
different magnitudes (Fig. 4(a)). 

We conducted simulation and in vivo reconstructions to 
explain the advantages of the first and second improvements: 
nice noise suppression under low SNR scenarios (Fig. 3) and 
robustness under partially corrupted shot data (Fig. 4). 

For simulation comparison, a toy comparison is conducted 
on a simulated four-shot eight-channel phantom. The whole 
procedure of simulated multi-shot DWI data is generated as 
follows: (1) Get a Shepp-Logan phantom image (Fig. 3(a)). (2) 
Multiply this image with eight-channel coil sensitivity maps 
(Fig. 3(b)) that are simulated by the Biot-Savart law [21]. (3) 
Multiply each channel image with the simulated shot phase (Fig. 
3(c)), which is generated by steps in [21]. (4) Transform each 
channel image into its k-space with Fourier transform and then 
add Gaussian noise to k-space. 

PHASE with accurate shot phase (P is given by simulated 
shot phase), and PHASE with estimated shot phase are 
compared with PLRHM. The implicit phase method, PLRHM, 
loses the image structure and has a large noise residual (Fig. 
3(d)). With the proposed PHASE method, this loss is reduced 
significantly and the noise is suppressed very well (Fig. 3(d)), 
if the estimated phase is accurate. Even with the estimated 
phase, the proposed PHASE (Fig. 3(f)) still outperforms 
PLRHM in lower loss of image structures and better noise 
suppression. These observations indicate the good potential of 
PHASE. 

 
Fig. 3. Reconstructions of the simulated four-shot eight-
channel phantom. (a) is the ground-truth magnitude image. (b) 
is one out of eight simulated coil sensitivity maps. (c) is one out 
of four simulated shot phases. (d)-(f) are error maps of 
reconstructed images by PLRHM, PHASE with accurate shot 
phase, and PHASE with estimated shot phase. Note: Gaussian 
noise (10 dB) is added to the k-space. The PSNRs of (d)-(f) are 
31.03, 32.80, and 32.50, respectively. 

The in vivo experiment shows that different shot images 
reconstructed by PLRHM have different magnitudes (Fig. 4(a)). 
The 8-th shot data is corrupted by common zipper artifacts [25] 
(yellow arrows in Fig. 4(a)), leading to the same artifacts 
residual in the SOS magnitude combined from all shot images 
(Fig. 4(b)). If data rejection [22, 26] is used as a post-processing 
to exclude the 8-th shot image before SOS, the artifacts in the 
magnitude image will be suppressed (Fig. 4(c)). 

Compared with PLRHM, PHASE shows good robustness to 
the partially corrupted data (Fig. 4(d)) without post-processing. 

 
Fig. 4. Partially corrupted shot data reconstructions, the data is 
8-shot, 17-channel, in-plane resolution 1.0×1.0mm2, b-value 
1000 s/mm2. (a) is magnitudes of eight shot images 
reconstructed by PLRHM. (b) and (c) are the SOS magnitude 
image from all eight shot and first seven shot images, 
respectively. (c) is the magnitude reconstructed by PHASE. 

B. Joint estimation model with PAIRed phase and magnitude 
priors (PAIR) 

High b-value DWI suffers from low SNR. The signal 
strength decreases exponentially with the increase of b-value 
[1]: 

0
be Ds s ,                                    (14) 

where s and s0 are voxel signal intensity with and without 

diffusion-weighted, b is the b-value of s, and D is the diffusion 
coefficient [1]. Non-diffusion image m0 (b-value=0) has the 
highest SNR. 

Besides above shot phase smoothness prior, the proposed 
model PHASE enables complementary constraint on magnitude 
m. Thus, we try to combine magnitude prior in the image 
domain with PHASE to improve the SNR further. 

A widely employed magnitude prior is total variation [21, 27]. 
It can reduce noise by restraining the sharp jump of the input 
signal [28, 29]. However, total variation may also bring blur 
edges to some extent (Figs. 5(a) and (b)).  

To avoid edge blur and suppress noise simultaneously, a 
weighted total variation is added to PHASE to get the paired 
phase and magnitude image regularizations (PAIR): 
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where   controls image smoothness and the weighted TV 

term 
wTV

m  is defined as: 

 

  

2, , 1,

wTV
,

1/ 22, , , 1            ,

x y x y x y

x y

x y x y x y






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 

m W m m

W m m

                (16) 

where W   and W   are weights in vertical and horizontal 

directions, and represent consistent edges among multi-b-value 
and multi-direction DWI. Its derivations are represented as: 

   

    
 
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1/22,
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(17) 

superscripts x and y are the coordinates. 
In the proposed method, the prior weights W  and W  are 

estimated from the image m0 (b-value=0) according to: 
2, , 1,

2, , , 1

exp

exp

x y x y x y

x y x y x y











         


        

0 0

0 0

W m m

W m m

,                (18) 

where    is a small denominator to enlarge the difference 
between neighbor pixels. 

Specifically, for a smooth region, the value of 

   , 1,x y x y 0 0m m (or    , , 1x y x y 0 0m m ) is close to 

0, leading to  ,x yW  (or  ,x yW ) approach to 1. At image 

edges, the value of    , 1,x y x y 0 0m m  (or 

   , , 1x y x y 0 0m m ) is relatively, leading to  ,x yW  (or 

 ,x yW ) be larger than 1. Thus, the exponential function in 

Eq. (18) adjusts all weights to the range (0, 1], and makes sure 
that W  and W  are large in smooth regions (blue arrows in 

Fig. 11) but small on edges (white arrows in Fig. 11). Then, 
through minimizing the objective function in Eq. (15), the target 
image will be penalized heavily at smooth regions and slightly 
or even not be penalized at edges. Therefore, the weighted TV 
can simultaneously suppress noise and avoid edge blurring. 

To show the benefits of the edge preserving prior, the 
methods including PHASE, PAIR with total variation, and 
PAIR with weighted total variation, are compared in Fig. 5. 

PAIR with total variation could greatly suppress the noise but 
results in loss of edge intensities (white arrow in Fig. 5(b)). 
PAIR with weighted total variation shows good tolerance to 
noise and preserves edges much better (Fig.5 (c)). In the 

following sections, PAIR with weighted total variation is 
abbreviated as PAIR for short. 

 
Fig. 5. Reconstructions of the simulated four-shot eight-
channel phantom. (a)-(c) are the error maps of PHASE, PAIR 
with total variation, and PAIR with weighted total variation, 
respectively. The yellow arrows show different noise residual 
levels and the white arrow shows blurred edges. Note: 
Simulated phantom is the same as Fig. 4. PSNRs of (a)-(c) are 
32.50, 33.12, and 34.23, respectively. 

 

C. Numerical algorithm 

We adopt the Projections Onto Convex Sets (POCS) 
algorithm to solve the PAIR in Eq. (15) [20, 30-32]. 

The iterative reconstruction is consisting of data consistency, 
phase update with low-rankness constraint, and magnitude 
update with weighted total variation (Fig. 1). In the iterative 
process, the phases become increasingly smooth (upper row in 
Fig. 1) and artifacts in magnitude image gradually decrease 
(lower row in Fig. 1). 

The k-th ( 1,2,k K  ) iteration is shown as follows: 

1) Data consistency 

 * * ,k k k k k
hj h j hj h j G C P m Y C P m-               (19) 

*

1

, 1, 2, , . 
H

k k
j i hj

h

j J


 I C G                        (20) 

2) Phase update with low-rankness constraint 

   1 * * SVT , , 1, 2, , ,k k
j j j J  I I=          (21) 

1 1 1 , 1,2, , ,k k k
j j j j J   P I I                        (22) 

where  SVT , Z   is the singular value thresholding operator 

on a matrix Z  [33, 34]. The first   singular values are saved 
and others minus a proper threshold  . 

3) Magnitude update with weighted total variation 
Firstly, the averaged magnitude k

avgm  of all shot images are 

obtained by:  

*

1

.
J

k k k
avg j j

j

 m P I                               (23) 

Then, weighted TV is performed on the averaged magnitude: 

wTV( ),

k

k k
wTV avg k




 


m
m m

m
                      (24) 

 1 ,k k k k
wTV   m m m m                        (25) 

where  1,2   controls convergence speed. 

IV. EXPERIMENTS 

A. In vivo datasets 

Comprehensive experiments are conducted to evaluate the 
performance of PAIR. Four datasets acquired on three vendors 
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from four centers are employed for in vivo experiments. Their 
imaging parameters are shown in Table I. All the in vivo data 
collected by ourselves in this study are approved by the 
institutional review board. 

For all datasets, odd-even EPI shifts have been corrected 
carefully. Coil sensitivity maps are calculated by ESPIRIT 
using m0 [35]. The directionally encoded color maps are 
produced using a Matlab toolbox1.  

B. Experiments settings 

For comparative study, navigator-based (IRIS [11]) and 
navigator-free (MUSE [18], POCS-ICE [20], MUSSELS-
IRLS-CS [16], PLRHM [17]) methods are adopted. MUSE is a 
widely accepted two-step explicit method. POCS-ICE is a joint 
phase and magnitude reconstruction method. MUSSELS-IRLS-
CS and PLRHM are implicit phase reconstruction methods 
which introduce the low-rankness priors into reconstruction. 
All the reconstructed multi-shot images by implicit phase 
methods are displayed after combining by the SOS. MUSE, 
POCS-ICE and PLRHM are implemented by ourselves, and 
MUSSELS-IRLS-CS is provided by Dr. Mathews Jacob online2. 

All methods are implemented in MATLAB and the parameters 
are optimized for best performance in terms of least artifacts. 

We take average angular error (AAE) and peak signal-to-
noise (PSNR) [15] as objective criteria: 

 1

1

1
ˆAAE (degree) := cos *180

N

l l
nL





 v v ,        (26) 

10 2

2

PSNR (dB) := 10 log
ˆ

NM 
 
 
 m - m

,                         (27) 

where 
2
 is the l2 norm, m and m̂  are vectorized reference and 

reconstructed images, respectively. lv and ˆ
lv  represent the 

primary diffusion direction vector of reference and 
reconstructed maps. L is the number of vectors. The higher 
PSNR and lower AAE indicate a lower noise level and smaller 
angular error, respectively. 

C. High-resolution DWI 

Reconstructed results of navigator-based method IRIS are 
employed as references (Fig. 6(a)), because the shot phase is 
accurately estimated by the navigator and the reconstructed 

TABLE Ⅰ IMAGING PARAMETERS OF THREE DATASETS. 
 

Dataset Vendor/Center Channel Shot 
Matrix 
 Size 

Resolutio
n 

(mm3) 

B-values 
(s/mm2) 

Signal 
averag

e 

Diffusion 
directions 

I 
Philips 3.0T 

/Beijing, China. 
8 8 230×232 1.0×1.0×4 0, 800 1 15 

II 
UI 3.0T  

/Shanghai, China 
17 4/8 

160×160, 
230×224 

1.4×1.4×5
, 

1.0×1.0×5 

0, 1000, 2000, 
3000, 4000 

1 3 

III 
Philips 3.0T 

/Xiamen, China 
32 4 180×180 1.2×1.2×5 0, 1000 2 12 

VI 
XinGaoYi 1.5T 
/Yuyao, China 

16 4 140×192 / 0, 1000 2 3 

 

 
Fig. 6. Reconstructions of high-resolution DWI images and color fractional anisotropy images estimated from 15 diffusion 
directions in Dataset I. The top row are the first direction DWI and the bottom row are directionally encoded color maps. 
Artifacts and blurred edge have been remarked with yellow and white arrows, respectively. AAEs are in the upper right corner. 

1 https://www.mathworks.com/matlabcentral/fileexchange/34008-dti-fiber-tractography-streamline-tracking-technique 
2 https://github.com/sajanglingala/data_adaptive_recon_MRI 
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images have no obvious artifact. Some obvious artifacts can be 
observed in the results of POCS-ICE and MUSSELS-IRLS-CS 
(yellow arrows in Figs. 6(b) and (c)). PLRHM and PAIR have 
a good tolerance to artifacts. PLRHM shows a relatively low 
SNR. Some edges have been blurred, such as the posterior horn 
of lateral ventricles (Fig. 6(d)). The result of the proposed PAIR 
achieves a lower noise level and more clear edges (Fig. 6(e)).  

Directionally encoded color maps are estimated with fifteen 
diffusion directions. They are calculated by fractional 
anisotropy images times the primary diffusion direction. Some 
color mismatches with reference maps could be observed in 
Figs. 6(a)-(d). The result of PAIR is closest to the reference 
maps visually and achieves the lowest angular error AAE. 

Thus, PAIR outperforms other state-of-the-art navigator-free 
methods on high-resolution DWI reconstruction. 

D. Ultra-high b-values DWI 

The ultra-high b-values DWI data (3000 and 4000 s/mm2) 
have a significantly low SNR, which poses a severe challenge 
for reconstruction. The navigator-based IRIS can hardly 
reconstruct the image (Fig. 7(a)), which may be caused by the 
low SNR and geometric mismatch between the navigator and 
image echo. POCS-ICE introduces obvious ghosting artifacts 
(Fig. 7(b)). Both MUSSELS-IRLS-CS and PLRHM better 
remove artifacts but suffer from relatively low SNR (Figs. 7(c) 
and (d)). The proposed PAIR outperforms other methods on 
much better tolerance to artifacts and noise (Fig. 7(e)). 

 
Fig. 7. Reconstructions of high b-values eight-shot data in Dataset II. 

 
Fig. 8. Reconstructions of fully sampling and undersampling four-shot data in Dataset II. Note: Solid and dotted lines represent 
sampled shot and unsampled shot data, respectively. Different colors represent different shots. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

8 

These results show that the PAIR is applicable for ultra-high 
b-values DWI reconstruction and does not need navigator 
signals. 

E. Accelerated DWI 

For accelerated DWI with undersampling, the four-shot data 
in Dataset II is reconstructed with retrospectively uniform and 
partial Fourier undersampling. The sampling rate of them are 
0.5 and 0.6, respectively. For evaluation, the fully sampled 
four-shot data are reconstructed as references (first row in Fig. 
8). 

On the fully sampled data, All the methods show comparable 
performances (first row in Fig. 8). Two explicit phase methods 
POCS-ICE and PAIR have relatively better resistance to zipper 
artifacts than MUSSELS-IRLS-CS and PLRHM. 

On the undersampled data, error maps corresponding to the 
fully sampling references are calculated. Compared with other 
methods, PAIR provides the highest fidelity results on both 
uniform and partial Fourier undersampling reconstructions (Fig. 
8). 

F. Comparison study with explicit phase method MUSE 

In this section, we compare the PAIR with a classical two-
step explicit method MUSE to illustrate the advantages of joint 
estimation over the simple explicit method. 

 
Fig. 9. Reconstructed magnitudes and shot phases of multi b-
values DWI data by MUSE and PAIR. The data are 4-shot, 17-
channel, in-plane resolution 1.5×1.5 mm2 from Dataset II. The 
b-value of (a)-(c) are 1000, 2000, and 3000 s/mm2, respectively. 

Fig. 9 shows the performance of PAIR and MUSE on 4-shot 
DWI reconstruction. Both MUSE and PAIR could remove 
motion artifacts well in magnitude images. However, noise 
residue on magnitudes of MUSE are relatively large, and some 
zipper artifacts can also be observed. PAIR has better noise 
suppression, especially in high b-value reconstructions (3000 
s/mm2). 

The increased b-values lead to an increase in phase winding 
in Fig. 9. For MUSE, the shot phases are estimated from each 
shot by SENSE reconstruction, and then will be fixed as known 
variables to estimate magnitude. However, in PAIR, the shot 
phase is updated in iterations. The shot phases reconstructed by 
PAIR have more structure details, especially in cerebrospinal 
fluid region (Fig. 9). Even though the true shot phase can never 
be known, the shot phases estimation by PAIR may be more 
precise because it can provide higher quality magnitudes. 

G. Comparison study on the weighted TV 

In Fig. 10, the high resolution (1.0×1.0 mm2) and high b-
values (3000 s/mm2) reconstructions show that, compared with 
PHASE, weighted TV provides PAIR better noise suppression 
while preserving edges. 

 
Fig. 10. Reconstructions by PHASE, PAIR with TV, and PAIR 
with weighted TV. The data from Dataset II are 4-shot, 17-
channel, 1.0×1.0 mm2, 1000 and 3000 s/mm2. Note: 0.02  , 
and weighted TV and TV have the same 0.3  . 

 
Fig. 11. Reconstructions with different TV. The data is 4-shot, 
17-channel, in-plane resolution 1.0×1.0 mm2, b-value 1000 
s/mm2 DWI in Dataset II. (a) is the reference image m0 (b-
value=0). (b)-(d) are results of PAIR with wTV ( 0.01  ), 
PAIR with wTV ( 0.02  ), and PAIR with TV. The up, 
middle and down row of (c)-(e) are reconstruction results, 
corresponding zoom in regions, and the weights W  calculated 

from m0. Note: weighted TV and TV have the same 0.3  . 

To further illustrate how weighted TV works, we draw the 
weights extracted from m0 under the different   (Fig. 11). The 
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weights are large in the smooth regions, while small in the 
image edges. Compared with PAIR with TV (equivalent to the 
case where the weights are all 1), PAIR with weighted TV could 
similarly suppress noise in the smooth region (white arrows in 
Fig. 11), and preserve texture details (blue arrows in Fig. 11). 

V. DISCUSSIONS 

A. Discussion on Parameter Settings 

The effect of parameter settings in the singular value 
thresholding operator  SVT , Z  is discussed in the 

simulation and in vivo experiments here. The operator is 
performed on the structured low-rank matrix Z to constrain 
phase smoothness. The first   singular values are saved and 
others minus a proper threshold  . 

In the simulation study, the radius of limited support R is 2, 
and the size of Z is 104×98550. PAIR achieves nice PSNR 
when   is in the range of 20-30, under a proper   (0.3-0.9) 
(Fig. 12(a)). When   is too large (≥1.2), only singular values 
larger than   are saved, resulting in invariant PSNR (second 
half of the purple and green curve in Fig. 12(a)). 

In in vivo study, the radius of limited support R is 2, and the 
size of Z is 104×48050 and   is 0.6. In a wide range of   (10-
30), PAIR has comparable results (Fig. 12(b)). When   
becomes larger (40-60), some artifacts will remain in the 
images (yellow arrows in Fig. 12(b)). 

The above experiments indicate PAIR is insensitive to 
parameters and has robust performance. 

Other typical parameters are 1  , 1.5  ,
4 1[10 ,5 10 ]    , The initialization of shot phase P and 

magnitude m are 1 and 0, respectively. the iteration stop 

condition is 
2 21 510k k k

F F

  m m m , and the max iteration 

is 1000. 

 
Fig. 12. PAIR Reconstructions on simulation and in vivo data 
with different   and  . (a) The simulation data is 4-shot, 8-
channel. (b) The in vivo data from Dataset II is 4-shot, 17-
channel, 1.5×1.5 mm2, 1000 s/mm2, and   is 0.6. 

B. Discussion on reconstruction time of PAIR 

The reconstruction time of PAIR is tested on the three kinds 
of DWI data (Tab. II). The iteration stop condition is 

2 21 510k k k

F F

  m m m , and the max iterations is 1000. In 

all tests, PAIR could reach convergence and complete 
reconstruction quickly (Tab. II). 

All the computation procedures are executed by MATLAB, 
running on a CentOS 7 computation server with twenty Intel 
Core i9-9900X CPUs of 3.5 GHz and 125 GB RAM. No 
parallel computing is employed. 

TABLE II. RECONSTRUCTION TIME OF PAIR 

Dataset 
Matrix size 

(RO×PE×Channel×Shot) 
Iterations 
when stop  

Time 
(s) 

II 160×160×17×4 22 12.4 

II 230×224×17×4 27 26.1 

III 180×180×32×4 45 34.3 

C. Discussion on multi-vendor multi-center reconstruction 

Multi-center data harmonization is an important issue for 
healthcare studies [36, 37]. We test the performance of PAIR on 
diverse DWI data acquired by scanners from 3 vendors in 4 
centers (Fig. 13). 

PAIR shows robust performance on the above multi-vendor 
multi-center data, and the motion artifacts could be removed 
well (Fig. 13). 

 

 
Fig. 13. PAIR reconstructions on the multi-center multi-vendor 
in vivo data. (a) is from Dataset I: Philips 3.0T scanner in 
Beijing, China. 8-shot, 8-channel, b-value 800 s/mm2, in-plane 
resolution 1.0×1.0 mm2. (b) is from Dataset II: United Imaging 
3.0T scanner in Shanghai, China. 4-shot, 17-channel, b-value 
1000 s/mm2, in-plane resolution 1.5×1.5 mm2. (c) is from 
Dataset III: Philips 3.0T scanner in Xiamen, China. 4-shot, 32-
channel, b-value 1000 s/mm2, in-plane resolution 1.2×1.2 mm2. 
(d) is from Dataset VI: XinGaoYi 1.5T scanner in Yuyao, China. 
4-shot, 8-channel, b-value 1000 s/mm2. 

 

VI. CONCLUSION AND OUTLOOK 

In this work, we aim at solving the multi-shot DWI 
reconstructions under inter-shot motions and ultra-high b-
values. A joint phase and magnitude estimation model with 
paired low-rank and weighted TV priors is proposed to 
regularize the reconstruction. The joint estimation model 
ensures that all shots share the same magnitude strictly. The 
weighted TV in the image domain explores similar edges 
among multi-b-value and multi-direction DWI. Comprehensive 
experiments show that PAIR has faithful shot phase estimation 
and can remove inter-shot (8 shots) motion artifacts very well 
even when the partial shot data are corrupted. Compared with 
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state-of-the-art methods, it shows much better and more robust 
performance on some low SNR scenarios, such as the 
undersampling (uniform and partial Fourier) and ultra-high b-
values DWI (4000 s/mm2). Moreover, reconstructions on multi-
vendor multi-center DWI data indicate its nice robustness. 

The good performance and nice robustness of PAIR on high-
resolution, ultra-high b-value and accelerated DWI 
reconstructions show great potential for advanced clinical DWI 
applications and brain function research. 

In the future, we will develop PAIR to solve abdomen DWI 
reconstructions, such as high-resolution prostate and liver DWI. 
These reconstructions suffer from lower SNR and non-smooth 
shot phase, which may be challenging for PAIR and need great 
improvements. 

In addition, to make it easier to use PAIR, we have 
implemented and deployed PAIR on the open-access cloud 
platform, CloudBrain-ReconAI [38-41]. (please visit 
https://csrc.xmu.edu.cn/CloudBrain.html). On the CloudBrain-
ReconAI, we also provide physics-informed deep DWI 
reconstruction methods [38, 41] as comparison algorithms to 
PAIR reconstructions. 
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