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Abstract— Soft-thresholding has been widely used in neural
networks. Its basic network structure is a two-layer convolution
neural network with soft-thresholding. Due to the network’s
nature of nonlinear and nonconvex, the training process heavily
depends on an appropriate initialization of network parameters,
resulting in the difficulty of obtaining a globally optimal solution.
To address this issue, a convex dual network is designed here.
We theoretically analyze the network convexity and prove that
the strong duality holds. Extensive results on both simulation
and real-world datasets show that strong duality holds, the
dual network does not depend on initialization and optimizer,
and enables faster convergence than the state-of-the-art two-
layer network. This work provides a new way to convexify
soft-thresholding neural networks. Furthermore, the convex dual
network model of a deep soft-thresholding network with a
parallel structure is deduced.

Index Terms— Convex optimization, nonconvexity, soft-
thresholding, strong duality.

I. INTRODUCTION

NEURAL networks (NNs) have been extensively
employed in various applications, including speech

and image recognition [1], [2], image classification [3], fast
medical imaging [4], and biological spectrum reconstruction
[5], [6], [7]. NN, however, is easy to stuck at the local
optimum or the saddle point due to the network nonconvexity
(Fig. 1) [8]. This limitation prevents NN from reaching the
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Fig. 1. Toy example: In some bad cases, the nonconvex NN gets stuck
in a local optimum or saddle point. The objective value of a two-layer
nonconvex and a convex NN model for 1-D vector fitting. The input of
the network is [−2, −1, 0, 1, 2]

⊤ and its ideal output (also called the label)
is [1, −1, −1, −1, 1]

⊤. Here, the bias term is included by concatenating a
column of ones to the input. Under three random initialization trials of network
parameters, the objective value of the nonconvex NN is different. Convex NNs,
which do not depend on the initialization, can be solved directly with a convex
procedure to obtain the optimal value.

global optimum [9], [10], [11]. To address this issue, proper
initialization of network parameters is required in the training
process [12], [13], [14].

Typical initialization strategies have been established [3],
[15], [16] but the network may still encounter instability if
the NN has multiple layers or branches [13]. For example,
the original Transformer model [17] did not converge without
initializing the learning rate in a warm-up way [18], [19], [20].
Roberta [21] and GPT-3 [22] had to tune the parameters of the
optimizer ADAM [23] for stability under the large batch size.
Recent studies have shown that architecture-specific initializa-
tion can promote convergence [19], [24], [25], [26], [27]. Even
though, these initialization techniques hardly work to their
advantage when conducting architecture searches, training
networks with branching or heterogeneous components [13].

Convexifying NNs is another way to make the solution
not depend on initialization [28], [29]. At present, theoretical
research on the convexification of NN focuses on finite-width
networks which include fully connected networks [30], [31],
[32], [33], [34], [35], [36], [37] and convolutional NNs (CNNs)
[38], [39]. The former is powerful to learn multilevel fea-
tures [40] but may require a large space and computational
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Fig. 2. Denoising performance of a two-layer convolutional NN with ReLU and ST on CIFAR-10. (a) Activate function. (b) Distribution of the activation
of ST. (c) Objective value. (d) PSNR.

resources if the size of training data is large. The latter
avoids this problem by reducing network complexity through
local convolutions [41], [42], [43] and have been successfully
applied in image processing [44], [45], [46], [47]. Up to now,
CNN has been utilized as an example in convexifying networks
under a common nonlinear function, ReLU [38], [39].

To make the rest of the description clear, following previous
theoretical work [38], we will adopt the denoising task handled
by a basic two-layer ReLU-CNN, for theoretical analysis of
convexity.

Let X̃ ∈ Rn×h denote a noise-free 2D image, n and h
represent the width and height, respectively. X̃ is contaminated
by an additive noise E, whose entries are drawn from a
probability distribution, such as N (0, σ 2) in the case of i.i.d
Gaussian noise. Then, the noisy observation Ỹ is modeled as
Ỹ = X̃+E. Given a set of convolution filters, Ũk ∈ Rm×m(k =

1, . . . , K ), noise-suppressed images are obtained under each
filter and then linearly combined according to [38]

K∑
k=1

(
Ỹ ⊗ Ũk

)
+

⊗ ṽk (1)

where ⊗ represents the 2D convolution operation, (·)+ denotes
an element-wise ReLU operation, and ṽk ∈ R is a 1 × 1 kernel
used as the weight in the linear combination. Then, convolu-
tion kernels, i.e., Ũk and vk , are obtained by minimizing the
prediction loss between the noise-free image and the network
output as

min
Ũk ,̃vk

∥∥∥∥∥
K∑

k=1

(
Ỹ ⊗ Ũk

)
+

⊗ ṽk − X̃

∥∥∥∥∥
2

F

. (2)

To reduce the network complexity, (2) is further improved
to an object value as [38]

min
Ũk ,̃vk

∥∥∥∥∥
K∑

k=1

(
Ỹ ⊗ Ũk

)
+

⊗ ṽk − X̃

∥∥∥∥∥
2

F

+ β

K∑
k=1

(∥∥Ũk
∥∥2

F + |̃vk |
2
)
(3)

by constraining the energy (or the power of norm) of all
convolution kernels. The β > 0 is a hyperparameter to trade
the prediction loss with the convolution kernel energy.

To convexify the primal network in (3), the convex dual-
ity theory was introduced to convert (3) into a dual form,
enabling the reach of global minimum [38]. No gap between

the primal and dual objective values has been demonstrated
theoretically and experimentally [38]. This work inspired us to
convexify other networks, for example, replacing ReLU with
soft-thresholding (ST).

ST [48] is another nonlinear function which is expressed as

τ (ai j )λ =


ai j + λ, ai j ≤ −λ

0, |ai j | < −λ

ai j − λ, ai j > −λ

(4)

where ai j is an entry in a matrix (or a vector), λ is a threshold,
and |ai j | is the absolute value of ai j . If the magnitude of an
entry is smaller than a threshold, this entry will be eliminated
to zero. Otherwise, the magnitude will be subtracted by λ but
maintains its original sign.

ST has been widely used in denoising [48], [49], [50], [51]
or sub-Nyquist signal recovery through enforcing the sparsity
(more zeros) [52], [53], [54], [55], [56]of a vector or low-
rankness (more zeros of singular values) of a matrix [56],
[57], [58], [59]. For example, the noise will be suppressed by
applying the ST on the transform, e.g., wavelets, of a noisy
image [60]. But different from ReLU where all negative values
are zero, ST can retain useful negative features. For example,
the distribution of the mean of activation of ST is closer to zero
than that of ReLU, resulting in faster convergence in network
training (Fig. 2). In the NN, ST is applied to remove noise
that is mixed in the feature maps of a noisy image [7], [59],
[61], [62], [63], [64], [65].

However, the convexity theoretical analysis of ST network
is more challenging for the ST is a three-stage function
[Fig. 2(a)]. Three-segment functions make it difficult to con-
vert nonlinear operations to linear operations and keep the
values constant. The values after the ST operation belong
to real numbers (no fixed constraints) and constraints cannot
be uniformly added to keep the values constant like ReLU.
We solved this problem by adding constraints in segments in
the proof process, resulting in the constraint being increased by
three times compared with ReLU. Meanwhile, the convexity
and strong duality of ST networks become very complicated
to prove theoretically and verify experimentally.

To the best of our knowledge, the convex form of primal
Two-Layer Convolutional NNs with ST (primal ST-CNN) has
not been set up. This work is to design its convex structure
and provide the theoretical analysis (Fig. 3). First, we derive
the weak duality of the primal ST-CNN using the Lagrange
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Fig. 3. NN structures. (a) Primal ST-CNN. (b) Dual ST-CNN.

Fig. 4. Toy example: Converting nonlinear operation to linear operation.
(a) ST in the primal ST-CNN. (b) Diagonal matrix in the dual ST-CNN.

dual theory. Second, the nonlinear operation is converted into
a linear operation (Fig. 4), which is used to divide hyperplanes
and provide exact representations in the training process.
Third, we theoretically prove that the strong duality holds
between the two-layer primal ST-CNN [Fig. 3(a)] and its
dual form (dual ST-CNN) [Fig. 3(b)]. Fourth, experiments
on both simulation and real-world datasets are conducted to
support theoretical findings. Finally, the convex dual network
model of a deep ST network with parallel structure is deduced
theoretically.

The rest of this article is organized as follows. Section II
introduces preliminaries. Section III presents the main
theorem. Section IV shows experimental results and
Section V makes the conclusion.

II. PRELIMINARIES

A. Notations

Matrices and vectors are denoted by uppercase and low-
ercase bold letters, respectively. ∥·∥2 and ∥·∥F represents
Euclidean and Frobenius norms, respectively. We partition
Ps ⊂ Rm2

into the following subsets:

Ps = l1 ∪ l2 ∪ l3 (5)

where

l1 = {uk | y⊤

i uk ≤ −λ}, H1 = {i | y⊤

i uk ≤ −λ}

l2 = {uk | − λ ≤ y⊤

i uk ≤ λ}, H2 = {i | − λ ≤ y⊤

i uk ≤ λ}

l3 = {uk | y⊤

i uk ≥ λ}, H3 = {i | y⊤

i uk ≥ λ

{yi ∈ Rm2
}

I
i=1, I = nh, uk ∈ Rm2

, λ ∈ R. (6)

We denote

S = S1 ∪ S2 ∪ S3 (7)

where

S1 = {i | i ∈ H1} ∪ {i | i ∈ H2}

S2 = {i | i ∈ H2},

S3 = {i | i ∈ H2} ∪ {i | i ∈ H3}. (8)

Y = [y1, y2, . . . , yI ]
⊤

∈ RI×m2
, QS

∈ RI×I is a diagonal
matrix, its diagonal elements are as follows:

Qi i =



y⊤

i uk + λ

y⊤

i uk
, if i ∈ S1

0, if i ∈ S2

y⊤

i uk − λ

y⊤

i uk
, if i ∈ S3.

(9)

QS
= QS1 + QS2 + QS3 . (10)

We denote

QS in QSYuk ≥ 0 as QS1

QS in QSYuk = 0 as QS2

QS in QSYuk ≤ 0 as QS2

PS = {uk | PS1 ∪ PS2 ∪ PS3} (11)

where

PS1 = {uk | QS1 Yuk ≥ 0, ∀i ∈ S1}

PS2 = {uk | QS2 Yuk = 0, ∀i ∈ S2}

PS3 = {uk | QS3 Yuk ≤ 0, ∀i ∈ S3}. (12)

B. Basic Lemmas and Definitions

Lemma 1 (Slater’s Condition [66]): Consider the optimiza-
tion problem

min
x

f0(x) (13)

s.t. f j (x) < 0, j = 1, . . . , J, Ax = b
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where A ∈ Rm×n , x ∈ Rn , b ∈ Rm , f0, . . . , f J are convex
functions.

If there exists an x∗
∈ relintD (where relint denotes the

relative interior of the convex set D := ∩
J
j=0dom( f j )), such

that

f j (x∗) < 0, j = 0, . . . , J, Ax∗
= b. (14)

Such a point is called strictly feasible since the inequality
constraints hold with strict inequalities. The strong duality
holds if Slater’s condition holds (and the problem is convex).

Lemma 2 (Sion’s Minimax Theorem [67], [68]): Let X
and Y be nonvoid convex and compact subsets of two linear
topological spaces, and let f : X × Y → R be a function
that is upper semicontinuous and quasiconcave in the first
variable and lower semicontinuous and quasiconvex in the
second variable. Then,

min
y∈Y

max
x∈X

f (x, y) = max
x∈X

min
y∈Y

f (x, y). (15)

Lemma 3 (Semi-infinite Programming [69]): Semi-infinite
programming problems of the form

min
x∈Rn

f (x), s.t. g(x, w) ≤ 0, w ∈ � (16)

where � is a (possibly infinite) index set, R = R ∪ {+∞} ∪

{−∞} denotes the extended real line, f : Rn
→ R and

g : Rn
× � → R. The above optimization problem is

performed in the finite-dimensional space R and, if the index
set � is infinite, is subject to an infinite number of constraints,
therefore, it is referred to as a semi-infinite programming
problem.

Lemma 4 (An Extension of Zaslavsky’s Hyperplane
Arrangement Theory [70]): Consider a deep rectifier network
with L layers, nl rectified linear units at each layer l, and an
input of dimension n0. The maximal number of regions of
this NN is at most ∑

( j1,..., jL )

L∏
l=1

(
nl

jl

)
(17)

where J = {( j1, . . . , jL) ∈ ZL
: 0 ≤ jl ≤ min{n0, n1 −

j1, . . . , nl−1 − jl−1, nl}, ∀1 = 1, . . . , L}. This bound is tight
when L = 1.

Definition 1 (Optimal Duality Gap [66]): The optimal
value of the Lagrange dual problem is denoted as d∗, and
the optimal value of the primal problem is denoted as p∗. The
weak duality is defined as d∗ is the best lower bound of p∗

as follows:

d∗
≤ p∗. (18)

The difference p∗
− d∗ is called the optimal duality gap of

the primal problem.
Definition 2 (Zero Duality Gap [66]): If the equality

d∗
= p∗ (19)

holds, i.e., the optimal duality gap is zero, then we say that the
strong duality holds. Strong duality means that a best bound,
which can be obtained from the Lagrange dual function,
is tight.

Fig. 5. Hyperplane defined by a⊤x = b in R2 determines two half-spaces.
The half-space determined by a⊤x ≥ b is the half-space extending in
the direction a. The half-space determined by a⊤x ≤ b extends in the
direction −a. The vector a is the outward of this half-space.

Fig. 6. Replacing convolutional operations with matrix multiplication.
(a) Convolution in (20). (b) Matrix multiplication in (21).

Definition 3 (Hyperplanes and Half-spaces [66]): A hyper-
plane is a set of form {x| a⊤x = b} where a ∈ Rn, x ∈

Rn×1, a ̸= 0 and b ∈ R.
A hyperplane divides Rn into half-spaces. A half-space is

a set of the form {x| a⊤x ≤ b} where a ̸= 0, i.e., the solution
set of one (nontrivial) linear inequality. This is illustrated in
Fig. 5.

III. MODEL AND THEORY

A. Proposed Model

A two-layer primal ST-CNN is expressed as follows:

p∗
= min

Ũk ,̃vk

∥∥∥∥∥
K∑

k=1

τ
(
Ỹ ⊗ Ũk

)
λ

⊗ ṽk − X̃

∥∥∥∥∥
2

F

+ β

K∑
k=1

(∥∥Ũk
∥∥2

F + |̃vk |
2
)

(20)

where the main difference between (20) and (3) is an
element-wise ST operator τ (ai j )λ = (|ai j | − λ)+sign(ai j ),
⊗ represents the 2D convolution operation, Ỹ ∈ Rn×h is the
input, Ũk ∈ Rm×m , ṽk ∈ R, β > 0.

Replacing convolutional operations with matrix multiplica-
tion (Fig. 6), (20) can be converted into the following form:

p∗
= min

u′

k ,v
′

k

∥∥∥∥∥
K∑

k=1

τ
(
Yu′

k

)
λ
v′

k − x

∥∥∥∥∥
2

2

+ β

K∑
k=1

(∥∥u′

k

∥∥2
2 + |v′

k |
2
)
(21)

where Y = [y1, y2, . . . , yI ]
⊤

∈ RI×m2
is the input, I = nh,

{yi ∈ Rm2
}

I
i=1, x ∈ RI is the label, u′

k ∈ Rm2
, v′

k ∈ R.
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Fig. 7. Objective value of a two-layer primal ST-CNN and dual ST-CNN trained with ADAM on a 1-D dataset. Assuming x = [−1, 2, 0, 1, 2]
⊤ and

y = [2, 1, 2, 1, 2]
⊤, which are the input and output, respectively. (a) Nonconvex primal ST-CNN. (b) Convex dual ST-CNN.

Next, we introduce the main theory (Theorem 1) that
converts a two-layer primal ST-CNN [Fig. 7(a)] into a convex
dual ST-CNN [Fig. 7(b)].

B. Theoretical Analysis

Theorem 1 (Main Theory): There exists k∗
≤ I such that

if the number of convolution filters k ≥ (k∗
+ 1), a two-layer

ST-CNN (21) has a strong duality satisfy form. This form is
given through finite-dimensional convex programming as

d∗

3 = min
wi ∈pw,w′

i ∈pw′

∥∥∥∥∥
I∑

i=1

QSY(w′

i − wi ) − x

∥∥∥∥∥
2

2

+ 2β

I∑
i=1

(∥∥w′

i

∥∥
2 + ∥wi∥2

)
(22)

where QS is a diagonal matrix, and its diagonal elements for
Qi i take the following values:

Qi i =



y⊤

i uk + λ

y⊤

i uk
, if i ∈ S1

0, if i ∈ S2

y⊤

i uk − λ

y⊤

i uk
, if i ∈ S3.

(23)

Y = [y1, y2, . . . , yI ]
⊤

∈ RI×m2
, wi and w′

i are both dual
variables, and they correspond to u′

k and v′

k in (21) which
are learnable parameters. x ∈ RI is the label

pw =
{
wi |QS1 Ywi ≥ 0, QS2 Ywi = 0, QS3 Ywi ≤ 0

}
pw′ =

{
w′

i |Q
S1 Yw′

i ≥ 0, QS2 Yw′

i = 0, QS3 Yw′

i ≤ 0
}
. (24)

QS
= QS1 + QS2 + QS3 . (25)

Remark: The constraints on w and w′ in pw and p′
w

arise from the segmentation property of the soft thresholding.
We first randomly generate the vector w̄ to do convolution
with the input Y and generate the corresponding QS based
on the value of Yw̄. Then, we input Y and QS into our dual
ST-CNN, and (22) is used in our objective function (objective
loss). Because it is an objective function with constraints pw

and p′
w, hence, we use hinge loss (adding constraints to the

objective function) as the loss function in experiments. There
exist wi , w′

i such that w̄ = w′

i − wi .

Fig. 8. Main derivation process.

As an extension, dual theory analysis of three-layer ST
subnetworks has been proved (see Supplementary Material E).

Before proving the main theory (Theorem 1), we present
the following main derivation framework (Fig. 8). The strong
duality relationship between the primal network and the dual
network is established, meaning that p∗

→ d1, d1 → d2,

d2 → d3 can be achieved at the same time.
1) Theorem 2: Scaling ∥u′

k∥
2
2 + |v′

k |
2 in the primal ST-

CNN (21).
2) Theorem 3: Eliminating variables to obtain an equiva-

lent convex optimization model under the principle of
Lagrangian dual theory.

3) Theorem 4: Convert nonlinear operations to linear oper-
ations using a diagonal matrix.

4) Theorem 5: Exact representation of a two-layer ST-
CNN.

5) Theorem 6: Prove zero dual gaps (strong duality).
Theorem 2: To scaling u′

k, v
′

k , let uk = εu′

k , vk =
1
ε
v′

k

p∗
= min

u′

k ,v
′

k

∥∥∥∥∥
K∑

k=1

τ
(
Yu′

k

)
λ
v′

k − x

∥∥∥∥∥
2

2

+ β

K∑
k=1

(∥∥u′

k

∥∥2
2 + |v′

k |
2
)
(26)

the primal ST-CNN can be translated as

p∗
= min

∥uk∥2≤1
min
vk∈R

∥∥∥∥∥
K∑

k=1

τ (Yuk)λvk − x

∥∥∥∥∥
2

2

+ 2β

K∑
k=1

(|vk |)

(27)
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where ε is introduced so that the scaling has no effect on
the network output, the proof of Theorem 2 is provided in
Supplementary Material A.

Then, according to (27), we can obtain an equivalent convex
optimization model by using the Lagrangian dual theory.

Theorem 3:

p∗
= min

∥uk∥2≤1
min
vk∈R

∥∥∥∥∥
K∑

k=1

τ (Yuk)λvk − x

∥∥∥∥∥
2

2

+ 2β

K∑
k=1

|vk |

is equivalent to

d∗

1 = max
∥uk∥2≤1,z:|z⊤τ (Yuk )λ|≤2β

−
1
4
∥z − 2x∥

2
2 + ∥x∥

2
2. (28)

Proof: By reparameterizing the problem, let

r =

K∑
k=1

τ (Yuk)λvk − x (29)

where r ∈ RI , hence, we have

d∗

1 = min
∥uk∥2≤1

min
vk ,r

∥r∥2
2 + 2β

K∑
k=1

|vk |

s.t. r =

K∑
k=1

τ (Yuk)λvk − x. (30)

Introducing the Lagrangian variable z, and z ∈ RI , z⊤
∈

R1×I , and obtaining the Lagrangian dual form of the primal
ST-CNN as follows:

d∗

1 = min
∥uk∥2≤1

min
vk ,r

max
z

∥r∥2
2 + 2β

K∑
k=1

|vk | + z⊤r

+ z⊤x − z⊤

K∑
k=1

τ (Yuk)λvk . (31)

Using Sion’s minimax theorem [67], [68] to change the
order of maximum and minimum

d∗

1 = min
∥uk∥2≤1

max
z

min
vk ,r

∥r∥2
2 + 2β

K∑
k=1

|vk | + z⊤r

+ z⊤x − z⊤

K∑
k=1

τ (Yuk)λvk . (32)

Minimizing the objective function (32) with r as a variable

∥r∥2
2 + z⊤r =

∥∥∥∥r +
1
2

z
∥∥∥∥2

2
−

1
4
∥z∥2

2. (33)

When r = −
1
2 z, (32) takes the optimal value. Hence, (32)

can be translated to

d∗

1 = min
∥uk∥2≤1

max
z

min
vk

−
1
4
∥z∥2

2 + 2β

K∑
k=1

|vk | + z⊤x

− z⊤

K∑
k=1

τ (Yuk)λvk . (34)

Let

f = min
vk

2β

K∑
k=1

|vk | − z⊤

K∑
k=1

τ (Yuk)λvk (35)

eliminating the variable vk in the primal ST-CNN, hence

max
z:∥uk∥2≤1

|z⊤

K∑
k=1

τ (Yuk)λ| ≤ 2β. (36)

Equation (34) is equivalent to the following optimization
problem:

d∗

1 = max
∥uk∥2≤1,z:|z⊤

∑K
k=1 τ (Yuk )λ|≤2β

−
1
4
∥z − 2x∥

2
2 + ∥x∥

2
2. (37)

Next, to divide hyperplanes and provide an exact represen-
tation, we convert the nonlinear operation τ (·)λ into the linear
operator using the diagonal matrix QS .

Theorem 4:

d∗

1 = max
∥uk∥2≤1,z:|z⊤

∑K
k=1 τ (Yuk )λ|≤2β

−
1
4
∥z − 2x∥

2
2 + ∥x∥

2
2

can be represented as a standard finite-dimensional program

d∗

2 = max
z

−
1
4
∥z − 2x∥

2
2 + ∥x∥

2
2 (38)

s.t. PS = {uk | PS1 ∪ PS2 ∪ PS3} (39)

where

PS1 = {uk | QS1 Yuk ≥ 0, ∀i ∈ S1}

PS2 = {uk | QS2 Yuk = 0, ∀i ∈ S2}

PS3 = {uk | QS3 Yuk ≤ 0, ∀i ∈ S3}. (40)

Proof: First, we analyze the one-sided dual constraint
in (36) as follows:

max
z:∥uk∥2≤1

z⊤τ (Yuk)λ ≤ 2β. (41)

To divide hyperplanes, we divide Rm2
into three subsets to

obtain (5) and (6). Let i ∈ H1 ∪ H2 ∪ H3, |H1|+ |H2|+ |H3| =

nh = I , HX be the set of all hyperplane arrangement patterns
for the matrix Y, defined as the following set [71], [72]

HX = {sign(Yuk + λ) ∪ sign(Yuk − λ)|uk ∈ Rm2
}. (42)

Next, we take out the positions of the elements correspond-
ing to different symbols and assign them according to

S1 = {i | i ∈ H1} ∪ {i | i ∈ H2}

S2 = {i | i ∈ H2}

S3 = {i | i ∈ H2} ∪ {i | i ∈ H3}

S = S1 ∪ S2 ∪ S3. (43)

To assign a corresponding value to the position of each i in
the above three sets such that the same transformation as the
soft threshold function is achieved, the diagonal matrix QS is
constructed, and its diagonal elements for Qi i as (9).

Using the diagonal matrix QS , the constraints in (36) are
equivalent to the following form:

max
∥uk∥2 ≤ 1, PS

|z⊤QS(Yuk)| ≤ 2β (44)

where QS
= QS1 + QS2 + QS3 .
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Hence, (37) can be finitely parameterized as

d∗

2 = max
z

−
1
4
∥z − 2x∥

2
2 + ∥x∥

2
2

s.t. max
∥uk∥2 ≤ 1, PS

|z⊤QSYuk | ≤ 2β. (45)

Now, we introduce an exact representation of a two-layer
ST-CNN.

Theorem 5:

d∗

2 = max
z

−
1
4
∥z − 2x∥

2
2 + ∥x∥

2
2

s.t. max
∥uk∥2 ≤ 1, PS

|z⊤QSYuk | ≤ 2β

is equivalent to

d∗

3 = min
wi ∈pw,w′

i ∈pw′

∥∥∥∥∥
I∑

i=1

QSY(w′

i − wi ) − x

∥∥∥∥∥
2

2

+ 2β

I∑
i=1

(∥wi∥2 +
∥∥w′

i

∥∥
2) (46)

where

pw =
{
wi |QS1 Ywi ≥ 0, QS2 Ywi = 0, QS3 Ywi ≤ 0

}
pw′ =

{
w′

i |Q
S1 Y w′

i ≥ 0QS2 Yw′

i = 0, QS3 Yw′

i ≤ 0
}
.

The proof of Theorem 5 is provided in Supplementary
Material B. According to this theorem, we can prove that
the strong duality holds, i.e., the primal ST-CNN and the
dual ST-CNN achieve global optimality. They are theoretically
equivalent and will obtain Theorem 6.

Theorem 6: Suppose the optimal value of the primal
ST-CNN is p∗ and the optimal value of the dual ST-CNN
is d∗

3 , the strong duality holds if p∗
= d∗

3 .
Proof: The optimal solution to the dual ST-CNN is the

same as the optimal solution to the primal ST-CNN model
constructed {u∗

k , v
∗

k }
K
k=1 as follows:

(
u∗

k , v
∗

k

)
=

 w∗

i√∥∥w∗

i

∥∥ ,

√∥∥w∗

i

∥∥, if w∗

i ̸= 0

(
u∗

k , v
∗

k

)
=

 w′∗

i√∥∥w′∗

i

∥∥ ,

√∥∥w′∗

i

∥∥, if w′∗

i ̸= 0 (47)

where {w∗

i , w′∗

i }
I
i=1 are the optimal solution of (46)

p∗
= min

u′

k∈Rm ,v′

k∈R

∥∥∥∥∥
K∑

k=1

τ
(
Yu′

k

)
λ
v′

k − x

∥∥∥∥∥
2

2

+ β

K∑
k=1

(∥∥u′

k

∥∥2
2 + |v′

k |
2
)

≤

∥∥∥∥∥
K∑

k=1

τ
(
Yu∗

k

)
λ
v∗

k − x

∥∥∥∥∥
2

2

+ β

I∑
k=1

(
∥∥u∗

k

∥∥2
2 + |v∗

k |
2)

=

∥∥∥∥∥
I∑

i=1

QSY
(
w′

i − wi
)
− x

∥∥∥∥∥
2

2

+ β

I∑
i=1,w∗

i ̸=0


∥∥∥∥∥∥ w∗

i√∥∥w∗

i

∥∥
2

∥∥∥∥∥∥
2

2

+

∥∥∥∥√∥∥w∗

i

∥∥
2

∥∥∥∥2

2


+ β

I∑
i=1,w∗

i ̸=0


∥∥∥∥∥∥ w′∗

i√∥∥w′∗

i

∥∥
2

∥∥∥∥∥∥
2

2

+

∥∥∥∥√∥∥w′∗

i

∥∥
2

∥∥∥∥2

2


=

∥∥∥∥∥
I∑

i=1

QSY(w
′
∗

i − w∗

i ) − x

∥∥∥∥∥
2

2

+ 2β

I∑
i=1

(∥∥w∗

i

∥∥
2 +

∥∥∥w
′
∗

i

∥∥∥
2

)
= d∗

3 . (48)

Combining p∗
≤ d∗

3 , p∗
≥ d∗

1 (Theorems 2–3) and
d∗

1 = d∗

2 = d∗

3 (Theorems 4–5), p∗
= d∗

3 is proved.
Basing on the Lemma 3 [69], we know that k + 1 of the

total I filters (wi , w′

i ) are nonzero at optimum, where k ≤ I
[38], [39].

Finally, by combining Theorems 2–6, the main theory
can be proved. Thus, the hyperplane arrangements can be
constructed in polynomial time (See proof in Supplementary
Material C).

It is useful to recognize that two-layer ST networks with
K hidden neurons can be globally optimized via the convex
program [see (22)]. The convex program has 6I 2 constraints
and 6I m2 variables, which can be solved in polynomial time
with respect to I . The computational complexity is at most
O(m12(I/m2)3m2

) using standard interior-point solvers.
The global optimization of NNs is NP-Hard [73]. Despite

the theoretical difficulty, highly accurate models are trained
in the practice using stochastic gradient methods [74].
Unfortunately, stochastic gradient methods cannot guarantee
convergence to an optimum of the nonconvex training loss [75]
and existing methods rarely certify convergence to a stationary
point of any type [76]. Stochastic gradient methods are also
sensitive to hyperparameters; they converge slowly to different
stationary points [77] or even diverge depending on the choice
of step size. Parameters like the random seed complicate
replications and can produce model churn, where networks
learn using the same procedure give different predictions for
the same inputs [78], [79].

Therefore, some optimizers were designed to find the opti-
mal solution during the training process. For example, early
on, the SGD optimizer [80], the SGD-based adaptive gradi-
ent optimizer (ASGD) [81], stochastic gradient descent with
momentum (SGDM) [82], Adaptive Gradient (AdaGrad) [83],
Root Mean Square Propagation (RMSprop) [84], and the
adoption of moment estimation (ADAM) [23] optimizer, may
lead to different training results under the same nonconvex
optimization objective [85], which are also observed in our
experimental results (see Section IV).

IV. EXPERIMENTAL RESULTS

Experiments will show three observations: 1) the per-
formance of the primal ST-CNN depends on the chosen
optimizer; 2) the performance of the primal ST-CNN relies
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Fig. 9. Training and testing with the different optimizers. (a)–(c) are
training results under the optimizer of SGD, ASGD, and Adam, respectively.
(d)–(f) are test results under the optimizer of SGD, ASGD, and Adam,
respectively.

on initialization; and 3) the zero dual gap holds between the
primal and dual ST-CNN.

All experiments were implemented on a server equipped
with dual Intel Xeon Silver 4210 CPUs, 128 GB RAM, the
Nvidia Tesla T4 GPU (16 GB memory), and PyTorch deep
learning library [86]. The test dataset includes simulated data,
the MNIST handwritten digits, and CIFAR-10 commonly used
in deep learning research [38], [87], [88].

Experiment A uses the MNIST handwritten digits dataset
with a size of 28 × 28. We randomly select 600 out of
60 000 as the training set, and 10 000 in the test set remain
the same. Then, they are added with i.i.d Gaussian noise from
the distribution N (0, σ 2) as the training and test dataset of the
primal and the dual ST-CNN.

For network training, 600 noisy images and their noise-free
ones are used as the input and label. For the network test,
10 000 noisy images and their noise-free ones are used as
the input and label. The number of training and test datasets
is consistent with that used in the ReLU-based dual theory
experiments [38]. When verifying the strong duality, we use
the training set 600 (see Supplementary Material E) and
increase the training set to 6000.

Experiment B and C uses the CIFAR-10 dataset with a
size of 32 × 32. We randomly select 3000 out of 50 000
as the training set, and 400 out of 10 000 as the test set.
In the denoising experiment, they are added with i.i.d Gaussian
noise from the normal distribution N (0, σ 2) where 0 is the
mean and σ is the standard deviation. For network training,
3000 noisy images and their noise-free ones are used as the
input and label. For the network test, 400 noisy images and
their noise-free ones are used as the input and label.

A. Experiment on Simulation Dataset MNIST

1) Primal ST-CNN Relies on Optimizer: Here, we choose
noise σ = 0.25, and the primal ST-CNN and the dual ST-CNN
are trained by using SGD, ASGD [81], and ADAM [23] as
the optimizers, respectively. The training and testing results are
shown in Fig. 9. The optimal solution of the primal ST-CNN
is dependent on the selection of optimizers.

Fig. 10. Example of training and testing with the different initialization.
The primal ST-CNN and the dual ST-CNN are trained with Kaiming uni-
form initial [16], mean 0, standard deviation 0.001, and standard deviation
0.005 initialized with normal distribution, respectively. (a) Training results.
(b) Testing results.

Fig. 11. Verify that zero dual gap (the strong duality) holds, i.e., the objective
function values are very close when both the primal ST-CNN and the dual
network objective value achieves global optimality. (a) and (b) is the objective
value under the training and test stage (networks are trained), respectively.

Fig. 12. Representative denoised images were obtained by the primal and
dual networks. Note: Noise following a Gaussian distribution with a mean 0
and standard deviation of 0.25 is added to the MNIST image.

2) Primal ST-CNN Relies on Initialization: We choose
different ways of parameter initialization including Kaiming
He uniform distribution initialized as well as a normal distri-
bution with zero mean and standard deviation of 0.001 and
0.005, respectively. The experimental results are shown in
Fig. 10. The objective value of the primal ST-CNN and
the dual ST-CNN coincide when two types of networks are
initialized with Kaiming He uniform distribution for training.
However, when we initialize the network parameters using
normal distributions with mean 0 and standard deviations of
0.001 and 0.005, the objective value of the dual ST-CNN will
be better than the primal ST-CNN.

This observation implies that the primal ST-CNN is depen-
dent on the selection of the initial values.

3) Verify Zero Dual Gap (Strong Duality): Zero dual
gap [66] means that, when both the primal and the dual
ST-CNN reach the global optimum, the objective values of
the two are equal. Therefore, according to the above two
experimental results, in order to make the primal network
achieve the global optimum, we choose ADAM [23] as the
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Fig. 13. Objective value of the primal and dual network under different optimizers and different initialization modes. (a)–(d) are results under the optimizer
of SGDM, AdaGrad, RMSProp, and Adam, respectively.

Fig. 14. PSNR performance of the primal and dual networks under different optimizers. (a)–(d) are results under the optimizer of SGDM, AdaGrad,
RMSProp, and Adam, respectively. Note: The PSNR is averaged on 400 noisy images after the networks have been trained. All network parameters are
initialized following a normal distribution N

(
0, 0.0012).

TABLE I
PSNR/RLNE OF DENOISING MNIST DATASET BY THE TWO NETWORKS

optimizer for the primal network, and the network parameters
are initialized by Kaiming He uniform distribution.

Under various noise levels, σ ∈ {0.25, 0.50, 0.75}. Both
approaches achieve close objective values under all noise
levels (Fig. 11).

From Fig. 12, Table I, the denoising results of the primal
network and the dual network is very close. Since the exper-
iment is based on database training, the difference of PSNR
after denoising is less than 1.0, and the difference of RLNE
is less than 0.1 both within the acceptable range. Therefore,
the strong duality is valid.

B. Experiment on Simulation Dataset CIFAR-10

In experiment B, we first verify primal ST-CNN relies on
initialization. Then, primal ST-CNN relies on the type of
optimizer that is verified. Finally, we verify strong duality.

1) Primal ST-CNN Relies on Initialization: The network
parameters are initialized following four normal distributions
with mean 0, and standard deviations of 0.0, 0.01, 0.001, and
0.005. Under four optimizers, we test the effect of different
initializations on the objective value.

Fig. 15. Representative denoised images in different epochs. (a) and (e) is
the input (noisy image) and label (noise-free image), (b)–(d) [or (f)–(h)]
are results obtained by the primal (or dual) network when epoch is 8, 16,
and 28, respectively. Note: SGDM optimizer and N

(
0, 0.0012) initializations

are adopted.

Fig. 13 shows that the primal network cannot achieve global
optimization when the initial standard deviation is 0.0 under
the four optimizers. On the contrary, the dual network can
reach the optimal value of 0.018 for all cases.

2) Primal ST-CNN Relies on Optimizer: In this part, all net-
work parameters are initialized following a normal distribution
N (0, 0.0012).

Under four optimizers, we test the denoising performance
of the primal and dual networks. The experimental dataset is
consistent with the above experiment. Under the optimizers
of SGDM [Fig. 14(a)] and AdaGrad [Fig. 14(b)], although
objective values of both primal and dual networks converge,
the denoising performance peak signal-to-noise ratio (PSNR)
does not reach the highest value. Representative denoised
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Fig. 16. Verification of the zero dual gap (the strong duality), i.e., the objective values are very close when both the primal and dual networks achieve the
global optimality. (a) and (b) is the objective value under the training and test stage (networks are trained), respectively. Note: Noise is added following a
Gaussian distribution with the mean 0 and the standard deviations 0.25, 0.50, and 0.75, respectively.

TABLE II
PSNR OF DENOISING CIFAR-10 DATASET BY THE TWO NETWORKS

Fig. 17. Representative denoised images were obtained by the primal and
dual networks. Note: Noise following a Gaussian distribution with a mean 0
and standard deviation of 0.50 is added to the CIFAR-10 image.

images are shown in Fig. 15. The intermediate and final
images differ greatly from the noise-free ones when the opti-
mizer of SGDM is applied. Under the optimizer of RMSProp
[Fig. 14(c)], the PSNRs can reach the best performance but
are unstable. Under the optimizer of Adam [Fig. 14(d)], the
primal network converges to the best PSNR which is the same
as that obtained by the dual network. Under all optimizers, the
dual network reaches the highest and most stable PSNR (solid
line in Fig. 14). These observations indicate that convexifying
the network into dual forms has a great advantage in making
the network converge and stable in a real-world dataset.

3) Verify Zero Dual Gap (Strong Duality): Experiments on
CIFAR-10 show that the strong duality between the primal
network and the dual network still holds (Fig. 16) when the
primal network converges to the global optimality. This obser-
vation is further verified by the very close PSNR performance
(Table II) and denoised images (Fig. 17) obtained by the two
networks.

It should be noted here that the optimal values of the primal
ST-CNN and the dual ST-CNN are not exactly equal as the
theory proves, but very close (the error is caused by the fact
that the experiment is based on a large amount of data training,

TABLE III
NAME ABBREVIATIONS OF DIFFERENT METHODS

Fig. 18. Classification accuracy when the noise standard deviation is 0.25.
Note: For the primal network, reduced accuracy points are observed at the
epoch of at the epoch of 595, 596, and 597 when the Adam optimizer is
applied.

which is within the negligible range). Hence, experimental
results are consistent with our theory.

C. Compare With Other Types of Learning Models

For a more concise description, a simplified table is given
(see Table III). CIFAR-10 was used in each experiment. All
networks are initialized using a normal distribution with a
mean of 0 and a standard deviation of 0.001. The details of
the experiment are as follows.

1) Compare the Classification Accuracy With
Primal_ST_CNN: In order to realize the classification,
classifiers are added to both the Dual_ST_CNN and
the Primal_ST_CNN. Fig. 18 shows that the proposed
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Fig. 19. Comparison between ResNet and our dual ST network. (a) Objective
values. (b) PSNR of denoising. Note: The noise standard deviation is 0.25.

Dual_ST_CNN obtains more stable classification accuracy
under different epochs than Primal_ST_CNN does. For
example, the accuracy of Primal_ST_CNN is reduced to 0.95,
0.975, and 0.975 at the epoch of 595, 596, and 597. This
mutation is avoided by Dual_ST_CNN.

2) Compare the Denoising Performance With ResNet:
Fig. 19 suggests that the denoising performance of ResNet
depends on the optimizers and cannot obtain the optimal
performance when SGDM is applied. On the contrary, our
Dual_ST_CNN can achieve the best denoising PSNR for all
the optimizers.

V. CONCLUSION

In this article, to achieve the global optimum and
remove the dependence of solutions on the initial network
parameters, a convex dual convolution neural network with
soft-thresholding is proposed to replace its primal convolution
neural network with soft-thresholding. Under the principle
of convex optimal dual theory, we theoretically analyze
the network convexity and prove that the strong duality
holds. Extensive results on both simulation and real-world
datasets show that strong duality holds, the dual network
does not depend on initialization, or optimizer and enables
faster convergence than the state-of-the-art two-layer network.
This work provides a new way to convexify neural network
with soft-thresholding. Furthermore, the convex dual network
model of a deep soft-thresholding network with a parallel
structure is deduced.
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