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A B S T R A C T

Magnetic resonance spectroscopy (MRS) is an important clinical imaging method for diagnosis of diseases.
MRS spectrum is used to observe the signal intensity of metabolites or further infer their concentrations.
Although the magnetic resonance vendors commonly provide basic functions of spectrum plots and metabolite
quantification, the spread of clinical research of MRS is still limited due to the lack of easy-to-use processing
software or platform. To address this issue, we have developed CloudBrain-MRS, a cloud-based online platform
that provides powerful hardware and advanced algorithms. The platform can be accessed simply through a
web browser, without the need of any program installation on the user side. CloudBrain-MRS also integrates
the classic LCModel and advanced artificial intelligence algorithms and supports batch preprocessing, quan-
tification, and analysis of MRS data from different vendors. Additionally, the platform offers useful functions:
(1) Automatically statistical analysis to find biomarkers for diseases; (2) Consistency verification between the
classic and artificial intelligence quantification algorithms; (3) Colorful three-dimensional visualization for
easy observation of individual metabolite spectrum. Last, data of both healthy subjects and patients with mild
cognitive impairment are used to demonstrate the functions of the platform. To the best of our knowledge, this
is the first cloud computing platform for in vivo MRS with artificial intelligence processing. We have shared
our cloud platform at MRSHub, providing at least two years of free access and service. If you are interested,
please visit https://mrshub.org/software_all/#CloudBrain-MRS or https://csrc.xmu.edu.cn/CloudBrain.html.
1. Introduction

Magnetic resonance spectroscopy (MRS) is a non-invasive technique
used to quantify metabolites in the human brain to diagnose various
diseases, such as breast cancer, craniopharyngiomas, and Rett syn-
drome [1–4]. However, the acquired MRS signals typically require data
preprocessing and quantitative analysis to obtain accurate metabolite
concentrations [5]. The purpose of preprocessing is to reduce the
data quality deterioration due to undesirable factors, such as field
inhomogeneities, scanner frequency drift, noise, and subject motion [5,
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6]. Preprocessing steps may include coil merging, lineshape correc-
tion, denoising, phase correction, frequency alignment, and water sup-
pression [7–9]. Quantifying MRS signals is a challenge due to low
signal-to-noise ratio (SNR) and overlapping peaks [10]. Traditional
quantification methods mainly included simple peak integration [11]
and peak fitting [10,12–15] methods. In recent years, the rapid de-
velopment of deep learning has led to the emergence of new artificial
intelligence algorithms in the field of MRS signal preprocessing [16–19]
and quantification [20–24]. Therefore, artificial intelligence software
and clinical validation of these new approaches are eagerly needed.
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Fig. 1. CloudBrain-MRS. 𝐂𝑚 indicates the concentration of metabolites.
Table 1
Programming languages of some tools for MRS.

Tool Language

LCModel [13] Fortran
JMRUI [25,26] Java
TARQUIN [27] C++
FSL-MRS [28] Python
Osprey [29] MATLAB
Gannet [30] MATLAB
FID-A [31] MATLAB

Currently, there are various open-source tools available for prepro-
cessing, quantification, and analysis of MRS signals, including LCModel
[13], JMRUI [25,26], TARQUIN [27], FSL-MRS [28], Osprey
[29], FID-A [31], and Gannet [30], as shown in Table 1. But none of
them implements deep learning. LCModel is a widely used tool written
in Fortran for MRS quantification, but users need to compile and install
it on a Linux PC, which requires certain skills. JMRUI [25,26] provides
a user-friendly graphical interface based on the Java framework, but
users need to install Java to run it. TARQUIN [27] is a GUI-based tool
that relies on a C++ library, but batch processing requires a command
line program. FSL-MRS [28] is a collection of Python modules that
require users to install environment dependencies. Osprey [29] and
FID-A [31] are fully integrated MRS data analysis pipeline that relies on
the MATLAB development environment. Gannet [30] is a tool for the
automated quantification of edited MRS data and is run via MATLAB
commands. While these tools provide a user-friendly interface, they still
require users to compile source code, download dependencies, or install
the software. Furthermore, none of these tools include deep learning
algorithms, which is a significant limitation for the current research
in the era of artificial intelligence. There is a strong need for a user-
friendly system that can enable biomedical researchers and clinical
radiologists to apply these advanced algorithms effectively to clinical
research.

In the past few decades, there have been several MRS cloud plat-
forms for simulating basis sets [32], reconstructing spectrum from
undersampled data of nuclear magnetic resonance [33], and integrating
MRI into the radiation therapy planning workflows [34]. Cloud plat-
forms also have been applied in magnetic resonance imaging (MRI),
2

including reconstructing and evaluating images in fast imaging [35–
37], processing and analyzing images [38,39], and simulating MRI
signals [40]. Cloud computing provides an easily accessible, flexible,
and scalable platform. Users need not worry about hardware mainte-
nance and management, and thus, they can focus on the core tasks of
their field of expertise. In this paper, we present our cloud comput-
ing platform for MRS with the entire processing and postprocessing
procedure.

In this study, we develop CloudBrain-MRS, a cloud-based platform
for automated data preprocessing, quantification, and analysis of MRS
data, as in Fig. 1. The platform provides both hardware and soft-
ware, and the latter includes advanced deep learning denoising method
ReLSTM [18], quantification method QNet [24], and the mainstream
quantification tool LCModel. Users can batch preprocess and quantify
MRS data online via a browser without any coding or installation of
the development environment. The platform also includes a statistical
analysis module to evaluate biomarker differences in quantification
results between healthy control and patient groups, and a series of
visualization services to help users evaluate these results. The platform
has developed a consistency analysis module for users to evaluate the
reliability of our quantification algorithms compared with LCModel.

CloudBrain-MRS has several significant advantages over the existing
tools for MRS. Firstly, it can be run using only a browser, eliminating
the need for powerful hardware configurations and client installation.
Secondly, it greatly reduces the requirements for the technical skill
of users. Thirdly, developers can expand and maintain the system,
with updates being delivered simultaneously to clients. Fourthly, this
platform has been developed with a module for the statistical analysis
of biomarkers. Such a function is very important for clinical research
but not provided by the previous MRS tools (Table 1). Lastly, as far
as we know, CloudBrain-MRS is the first cloud-based computational
platform that applies artificial intelligence to in vivo MRS.

2. Platform design and implementation

2.1. Workflow summary

Currently, the platform mainly contains two functional modules:
Intelligent quantification and automatic analysis. Users can register
an account or use our demo account (username: demo_csg, password:
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Fig. 2. The whole workflow of CloudBrain-MRS.

csg12345678!). The manual on the homepage also can help users to
get started quickly. The workflow of CloudBrain-MRS is illustrated in
Fig. 2 and can be described in detail as follows:

(1) Load the data and the corresponding parameters. The platform
currently supports reading RAW data from Philips, Siemens, and GE,
DICOM data from United Imaging and Siemens, and also supports
LCModel’s data format.

(2) Invoke the quantification model to quantify the data either in
batch or not, and save the quantification results. If a user chooses to
preprocess the data, denoising will be performed before quantification.

(3) Generate four types of visual spectra based on the quantification
results: Inputted spectrum, fitted spectra of overall and individual
metabolites, and 3D visualized spectrum. If denoising is applied, both
the spectra before and after denoising will be shown.

(4) Extract the quantitative results for analysis and generate the
corresponding analysis charts. Statistical analysis will generate box
plots and trilinear tables. The function of ‘‘Consistency Analysis’’ will
generate Bland-Altman charts and box plots.

2.2. Architecture of the system

To enhance user-friendliness, CloudBrain-MRS adopts the browser/
service (B/S) working model, which stands for a browser-request/
server-response model. The system architecture can be divided into
three parts, namely browser, server, and database. Fig. 3 displays the
interactions between each part and the libraries they depend on. Below
are the functions and dependencies of each part:

(1) The browser is used for user interaction with the server, which
includes a user interface layer, an anonymization layer, and an in-
teraction layer. The user interface layer utilizes hypertext markup
language (HTML) and cascading style sheets (CSS) technologies to
display data and operations to the user, providing a user-friendly
interface and interaction experience. Meanwhile, the interaction layer
is implemented through the Vue framework, which sends the user’s
request to the server and processes the response through the hypertext
transfer protocol (HTTP). The anonymization layer is for data security
3

and privacy protection and the details will be described in Section 2.3.
Fig. 3. System architecture of CloudBrain-MRS.

(2) The server is responsible for processing data. After receiving
HTTP requests from the browser, the server uses SQLAlchemy to au-
tomatically generate structured query language (SQL) statements to
interact with the data layer. Once the data has been retrieved, the
server processes it based on the pre-existing business logic. This is done
through the business logic layer, which encapsulates the application
model and executes the application policy. This enables the system
to perform various functions such as data processing, calculation, and
analysis.

(3) The data layer stores all data, including user information, quan-
titative results, statistical analysis results, and other relevant data, in
MySQL.

In summary, the server of our platform can be considered a machine
with hardware and algorithms. The server is equipped with an Intel
Xeon Processor with 4 cores, 62 GB of RAM, and an NVIDIA Tesla K40M
GPU, which will be utilized to accelerate the training and testing of the
deep learning models. The developer of our platform is responsible for
hosting and maintaining the server, and the user can access and use
the service directly only through a browser. The platform sets a storage
space limit of 1 GB per registered user. With a user concurrency of 100,
the throughput is 152.8 transactions per second. Using the B/S mode
can reduce the cost for users and improve the scalability of the system.

2.3. Security and privacy in the system

In the cloud system, uploaded files are desensitized, and sensitive
information such as names are deleted, but the information needed
for data analysis such as age and gender is retained. Patient privacy
is handled at the browser and no patient-identifiable information is
transmitted to our server. Users have the right to delete data. Once
deleted, both the original and processed data are permanently deleted
from the server.

For data secure transmission, CloudBrain-MRS adopts measures
such as encrypted transmission and identity authentication to pre-
vent sensitive information from being illegally obtained. The platform
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Fig. 4. The user interface of CloudBrain-MRS for RAW data. The user interface will
change based on user choices.

uses the 2048-bit Rivest–Shamir–Adleman (RSA) algorithm to encrypt
sensitive information before transmission. JSON Web Token (JWT) is
utilized for validating the user’s login status. With the Advanced En-
cryption Standard (ASE) algorithm, JWT is transmitted with encryption
for secure authentication.

For data storage security, the platform sets up a white list of allowed
ports to impose strict access restrictions on the database and adds
protection against distributed denial of service (DDOS) attacks. Data
in the database and cache are stored using encrypted storage.

3. Algorithms in the system

3.1. Signal model

CloudBrain-MRS models the MRS signal as a combination of the
metabolite signal, background signal from MacroMolecules (MMs),
and noise [13]. The metabolite signal is a linear combination of the
elements in the basis set. The complex signal data 𝑌 [(𝑛𝛥𝑡)|𝜀𝑌 ] [13] can
be modeled as:
𝑌 [(𝑛𝛥𝑡)|𝜀𝑌 ] = exp[−𝑖(𝜑0 + 𝑛𝛥𝑡𝜑1)][𝐵(𝑛𝛥𝑡)

+
𝑁𝑀
∑

𝑙=1
𝐶𝑙𝑀𝑙(𝑛𝛥𝑡; 𝛾𝑙 , 𝑓𝑙)] + 𝜀𝑌 (𝑛𝛥𝑡), 𝑛 = 0, 1, 2,… , 𝑁 − 1,

(1)

where 𝑁 is the length of the signal, 𝛥𝑡 is the sampling interval, 𝜀𝑌 (𝑛𝛥𝑡)
is the complex white Gaussian noise, and 𝜎(𝑌 [𝑛𝛥𝑡]|𝜀𝑌 ) is the standard
deviation of the noise. 𝐵(𝑛𝛥𝑡) denotes the background signal. 𝜑0 and 𝜑1
denote the zero-order and first-order phases, respectively, due to non-
ideal acquisition conditions. 𝐶𝑙 denotes the 𝑙th concentration factor,
and 𝑁𝑀 is the number of metabolites. 𝑀𝑙(𝑛𝛥𝑡; 𝛾𝑙 , 𝑓𝑙) is the signal of the
𝑙th metabolite modeled in the basis set and is disturbed by imperfection
factors (IFs) [13] as follows:

(2)
4

𝑀𝑙(𝑛𝛥𝑡; 𝛾𝑙 , 𝑓𝑙) = ℱ {𝑚𝑙(𝑛𝛥𝑡)𝑒𝑥𝑝[−(𝛾𝑙 + 𝑖𝑓𝑙)𝛥𝑡]},
Table 2
Improvement of SNR after denoising.

Test sample No. SNR before denoising SNR after denoising

1 22 33
2 26 33
3 30 49
4 34 46
5 25 42

where ℱ denotes the discrete Fourier transform, 𝑚𝑙(𝑛𝛥𝑡) is the time-
domain signal of 𝑀𝑙(𝑛𝛥𝑡; 0, 0). 𝛾𝑙 and 𝑓𝑙 denote the linewidth deviation
and frequency drift, respectively, due to non-ideal conditions.

3.2. Denoising

For in vivo spectra, low metabolite concentrations and non-ideal
conditions can result in low SNR, which leads to difficulty in quantifica-
tion and analysis [7,13]. Denoising is a signal preprocessing technique
used to remove noise from a signal and improve its quality.

CloudBrain-MRS has deployed an end-to-end deep learning denois-
ing model called Refusion Long Short-Term Memory (ReLSTM) [18]
for preprocessing data and improving the SNR of data (Table 2). This
model has been trained with in vivo brain spectra to map MRS time-
domain data with low SNR (24 Signal Averages (SA)) to high SNR (124
SA).

For an input 𝑌 [(𝑛𝛥𝑡)|𝜀𝑌 ] with a few repeated samples (≥24 SA), the
platform applies the denoising model to obtain a high SNR spectrum
𝑌 [(𝑛𝛥𝑡)|𝜀124SA] close to 124 repeated samples, which improves the
quantitative accuracy of key metabolites [18].

𝑌 [(𝑛𝛥𝑡)|𝜀124SA] = ReLSTM{𝑌 [(𝑛𝛥𝑡)|𝜀𝑌 ]}. (3)

3.3. Quantification

To ensure the reliability of the quantification results, CloudBrain-
MRS integrates LCModel and QNet algorithms.

3.3.1. LCModel
LCModel utilizes 𝑁𝐵 cubic B-splines 𝐵𝑗 (𝑛𝛥𝑡) to model the back-

ground signal and utilizes the lineshape coefficients 𝑆𝑛 to represent
field inhomogeneities, eddy currents, etc. Eq. (1) is expressed in
LCModel [13] as follows:

𝑌 [(𝑛𝛥𝑡)|𝜀𝑌 ] = exp[−𝑖(𝜑0 + 𝑛𝛥𝑡𝜑1)][
𝑁𝐵
∑

𝑗=1
𝐻𝑗𝐵𝑗 (𝑛𝛥𝑡)

+
𝑁𝑀
∑

𝑙=1
𝐶𝑙

𝑁𝑠
∑

𝑘=−𝑁𝑠

𝑆𝑘𝑀𝑙(𝑛𝛥𝑡; 𝛾𝑙 , 𝑓𝑙)] + 𝜀𝑌 (𝑛𝛥𝑡),

(4)

Where 𝑆𝑘 and 𝐻𝑗 are the lineshape coefficients and the B-spline coef-
ficients, respectively.

The whole optimization problem of the fitting model [13] is defined
as:

min
𝐂

1
𝜎2{𝑌 [(𝑛𝛥𝑡)|𝜀𝑌 ]}

Re{𝑌 [(𝑛𝛥𝑡)|𝜀𝑌 ] − 𝑌 [(𝑛𝛥𝑡)|𝜀𝑌 ]}2

+ ‖𝛼𝑆𝑅𝑆𝐒‖2 + ‖𝛼𝐵𝑅𝐵𝐇‖

2 +
𝑁𝑀
∑

𝑙=1
{
[𝛾𝑙 − 𝛾0𝑙 ]

2

𝜎2(𝛾𝑙)
+

𝑓 2
𝑙

𝜎2(𝑓𝑙)
},

(5)

where Re{⋅} denotes the real part of the complex vector, 𝐒 and 𝐇 are
the vector of 𝑆𝑘 and 𝐻𝑗 , respectively. 𝑅𝑆 and 𝑅𝐻 are regular matrices
with smoothing constraints on 𝐒 and 𝐇, respectively. 𝑎𝑆 and 𝑎𝐻 are
weighting factors used to balance between the regular terms. The last
terms in Eq. (5) represent prior normal probability distributions for the
parameters 𝛾𝑙 and 𝑓𝑙, which bring more stable solution. LCModel solves
Eq. (5) with the Levenberg–Marquardt (LM) algorithm and a limited-
memory algorithm for bound constrained optimization (L-BFGS-B) to
obtain metabolite concentrations �̂� [13].
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Compared with other commonly used quantification methods,
LCModel has excellent model building, quantification accuracy, and
noise resistance. Although LCModel has been open-sourced, it requires
a certain level of compiling and operational skills for installation and
use. To enhance user-friendliness, the platform has integrated LCModel
with interactions facilitated through a shell script. This integration en-
ables the platform to efficiently process data in batches using LCModel
without users understanding the internal operation details. LCModel
requires users to provide a sequence-specific basis set. Our platform
contains several commonly used basis sets that can be automatically
selected according to vendor and sequence parameters. The platform
will provide more types of basis sets for service users in the future.

3.3.2. QNet
CloudBrain-MRS also has deployed an artificial intelligence quantifi-

cation model named QNet. The model contains a deep learning network
for predicting IFs {𝜑0, �̂� , 𝐟} to solve nonlinear problems based on the
powerful ability of deep learning [24], as follows:

{𝜑0, �̂� , 𝐟} = extraction(𝑌 [(𝑛𝛥𝑡)|𝜀𝑌 ]|Θextraction), (6)

where extraction(⋅) is a deep learning network for predicting {𝜑0, �̂� , 𝐟}
from input 𝑌 [(𝑛𝛥𝑡)|𝜀𝑌 ] with network parameters Θextraction, and 𝐟 =
[𝑓1, 𝑓2,… , 𝑓𝑁𝑀

]. The network consists of 3 stacked convolutional
locks (SCBs) and 2 fully connected layers. Each SCB consists of 2 con-
olutional layers and a maximum pooling layer, and each convolutional
ayer is followed by the non-linear activation function Rectified Linear
nit (ReLU).

Since the background signal is very variable for in vivo data and
ifficult to model accurately, the platform used a large number of
imulated background signals to train a deep learning network

prediction(𝑌 [(𝑛𝛥𝑡)|𝜀𝑌 ]|Θprediction), which can predict �̂�(𝑛𝛥𝑡) directly
from the input 𝑌 [(𝑛𝛥𝑡)|𝜀𝑌 ] with the network parameters Θprediction. The

odule [24] can be represented as follows:

̂ (𝑛𝛥𝑡) = prediction(𝑌 [(𝑛𝛥𝑡)|𝜀𝑌 ]|Θprediction). (7)

The network consists of 6 SCBs and 2 fully connected layers. Fi-
nally, metabolite concentrations �̂� can be estimated using linear least
squares [24]:

min
𝐂

∥ exp[−𝑖(𝜑0)][
𝑁𝑀
∑

𝑙=1
𝐶𝑙𝑀𝑙(𝑛𝛥𝑡; 𝛾𝑙 , 𝑓𝑙) − 𝑌 [(𝑛𝛥𝑡)|𝜀𝑌 ]

+ �̂�(𝑛𝛥𝑡)] ∥2 .

(8)

The method combines the interpretability of the magnetic resonance
signal model and the nonlinear learning ability of the neural network to
achieve fast and accurate quantification of MRS. Experimental results
show that QNet has a more stable quantification than LCModel at
different SNRs [24].

3.4. Statistical analysis

Analyzing differences in biomarkers between healthy subject and
patient groups can help researchers better understanding the changes
in the biochemistry of the human body. For example, in the study of
Alzheimer’s disease, N-acetylaspartate (NAA)∕Creatine (Cr) has been
identified as a potential biomarker for brain dysfunction [41,42]. Some
existing statistical software can help with statistical analysis, such as
SPSS and Excel. However, users need to organize the quantitative
results by themselves, which is very time-consuming.

CloudBrain-MRS has developed a statistical analysis module that au-
tomatically quantifies and analyzes data uploaded by users, as shown in
Fig. 4. The module uses LCModel to quantify data and an independent
samples t-test or a Mann–Whitney U-test to analyze whether there is a
significant difference between healthy individuals and patients. To an-
alyze the metabolic characteristics of gliomas and Parkinson’s disease,
5

the platform provides several key metabolite concentrations as refer-
ences. For glioma patients, the platform provides tCho (Glycerophos-
phocholine (GPC)+ Phosphocholine (PCh))∕tCr (Cr+Phosphocreatine
(PCr)), tCho∕tNAA (NAA+N-acetylaspartylglutamate (NAAG)), and
tNAA∕tCr as indicators [43–45]. For Parkinson’s disease, the platform
provides tNAA∕tCr, tCho∕tCr, and tNAA∕tCho as indicators [46,47].
In addition, users can add other indicators according to their research
needs for analysis. If the values of these indicators between healthy
individuals and patients satisfy the assumption of normal distribution,
the platform will use an independent samples t-test to analyze. Instead,
a Mann–Whitney U test should be applied. The procedure of an inde-
pendent samples t-test consists of two stages [48]. In the initial stage,
Levene’s test is applied to further evaluate the assumption of equal
variances. If the assumption is met, the Student’s t-test is selected. If
not, the Welch’s t-test is chosen.

3.5. Consistency analysis

To help users verify the reliability of the traditional quantifica-
tion method LCModel and artificial intelligence quantification method
QNet, CloudBrain-MRS provides a consistency analysis service that
is currently limited to healthy individuals, as shown in Fig. 4. This
service has two aspects. Firstly, a Bland-Altman analysis is conducted
to evaluate the degree of consistency between the two algorithms. This
analysis will calculate the difference and mean of the concentrations
quantified by the two algorithms and then will be illustrated by a
scatter plot. Secondly, box plots of metabolite concentrations are gener-
ated based on the normal concentration ranges [23,49–51] in healthy
individuals to check the distribution of metabolite concentration val-
ues. This enables users to know if the quantification results of the
two algorithms fall within the normal concentration ranges. Currently,
the consistency analysis mainly focuses on tNAA∕tCr, tCho∕tCr, Glx
(Glutamate (Glu)+Glutamine (Gln))∕tCr, myo-Inositol (Ins)∕tCr, and
Glutathione (GSH)∕tCr.

3.6. High efficiency of the platform workflow

To demonstrate the advantage of improving work efficiency, we in-
vited three clinical doctors to use the platform for batch quantification
and analysis of 5 spectra acquired on a Philips scanner from 5 healthy
volunteers. Using CloudBrain-MRS, users only need to upload data and
select parameters to obtain results for preprocessing, quantification,
and analysis. The average time spent by all doctors to learn the whole
workflow including all the above tasks was 7.33 min.

In contrast, the existing workflows without using our platform are
time-consuming and require users to perform many steps: (1) Parsing
data, using appropriate functions according to the data format from
the MRI scanner. (2) Performing data preprocessing using packaged
functions and models. (3) Converting data formats. Some programs can
read raw data from different vendors, but using LCModel to quantify
MRS data often requires converting data to the .RAW format. (4) Con-
ducting quantification. Users need to upload basis sets or generate them
using software, which can be time-consuming. (5) Organizing results
from multiple data quantifications into tables. (6) Using tools like
SPSS for data analysis. (7) Additionally, if users need to use advanced
deep learning models, they also need to train models separately and
preprocess data into the formats acceptable to the models.

Thus, the key advantage of this platform lies in providing an inte-
grated workflow that covers the entire process including preprocessing,
quantification, and analysis. Compared with the existing workflows of
using the individual corresponding programs one by one, it greatly

saves users’ time and reduces the requirement for specialized skills.
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Fig. 5. Examples of visualization of CloudBrain-MRS. (a) and (b) are the fitted spectra of QNet and LCModel, respectively. (c) and (d) are the fitted spectra of GSH with QNet
and LCModel, respectively. (e) is the 3D visualization spectra of QNet.
Fig. 6. A denoising result of CloudBrain-MRS from a healthy volunteer. The unit of
chemical shift is expressed in parts per million (ppm).

3.7. Visualization

To help users evaluate quantification results, CloudBrain-MRS has
developed a range of visualization tools. Users can view fitted spectra
of QNet or LCModel, as shown in Fig. 5a and Fig. 5b. Additionally,
the platform extracts the fitted results for each metabolite, as shown
in Fig. 5c and Fig. 5d, which aids in evaluating the contribution of
each metabolite. Moreover, the platform utilizes echarts technology to
provide 3D visualization of every metabolite in basis set, enabling users
to have a comprehensive view of the fit results, as in Fig. 5e.

4. Demonstrations with in vivo data

We demonstrate the practicality of CloudBrain-MRS with some sim-
ple examples.

The in vivo data used in Sections 4.1, 4.2, and 4.4 were approved
by the institutional review board of Xiamen University. A total of 15
single-voxel short-TE PRESS MRS data were collected from 15 healthy
volunteers on Philips scanners (3 T field strength, spectral width =
2000 Hz, 2048 points, TR = 2000 ms, TE = 35 ms, voxel size =
20 × 20 × 20 mm3, Number of Signal Averages (NSA) = 128). 5 spectra
were selected for illustrations in Sections 4.1 and 4.2, and all 15 spectra
were used for illustrations in Section 4.4.

The in vivo data used in Section 4.3 were approved by the in-
stitutional review board of Shandong Provincial Hospital affiliated to
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Fig. 7. A quantitative result of LCModel from a healthy volunteer. The spectrum was
denoised before quantification.

Shandong University. 12 single-voxel short-TE PRESS MRS data were
collected from 12 healthy volunteers and 14 single-voxel short-TE
PRESS MRS data were collected from 14 mild cognitive impairment
(MCI) patients with Philips scanners (3 T field strength, spectral width
= 2000 Hz, 2048 points, TR = 2000 ms, TE = 30 ms, voxel size =
20 × 20 × 40 mm3, NSA = 128).

4.1. Denoising

5 spectra (Philips RAW data) from healthy volunteers were up-
loaded to CloudBrain-MRS for preprocessing tests. The denoising per-
formance is evaluated by the SNR [13], and the improvement in SNR is
summarized in Table 2. The denoising result demonstrates the effective
suppression of noise, as shown in Fig. 6, where the blue curve is the
input spectrum and the yellow curve is the result after denoising. The
name of the spectrum is displayed at the bottom. And users can switch
to the results of the previous or next data by clicking on ‘‘Previous
page’’ or ‘‘Next page’’ when performing batch processing.

4.2. Quantification

The 5 denoised spectra in Section 4.1 were used to test the two
quantification models separately.



Journal of Magnetic Resonance 358 (2024) 107601X. Chen et al.
Fig. 8. A quantitative result of QNet from a healthy volunteer. The spectrum was
denoised before quantification.

Fig. 9. Box plots of relative metabolite concentrations for statistical analysis between
12 healthy volunteers and 14 MCI patients. A sliding bottom tab bar was designed
to view box plots of other indicators. A group with a p-value less than 0.05 will be
automatically marked by the platform.

Fig. 10. The independent samples t-test results between 12 healthy volunteers and 14
MCI patients. The data are represented as mean ± standard deviation.

4.2.1. Quantitative results of LCModel
One of the LCModel quantification results from the CloudBrain-

MRS platform is shown in Fig. 7. The left bottom of Fig. 7 shows
the comparison results between the input spectrum and the LCModel
fitted spectrum. The left top of Fig. 7 shows the residual, that is the
difference between them. And the right in Fig. 7 presents the quantified
concentrations of 17 metabolites. The column of ‘‘Metabolite’’ is a
list of metabolite names, the column of ‘‘∕Cr+ PCr’’ indicates the
relative concentration of a metabolite to tCr, and ‘‘conc’’. indicates the
absolute concentration. Cramér-Rao Lower Bound (CRLB) is a reliable
indicator of minimum errors for estimated parameters [52], and ‘‘%SD’’
represents the CRLB expressed in percent of the estimated concentra-
tion [13]. The %SD ranges from 0 to 999, and a %SD < 20 is used
as a rough criterion of acceptable reliability [13,18]. A smaller %SD
value implies a more precise estimate. Different data can be selected
by clicking on ‘‘Previous page’’ or ‘‘Next page’’ at the bottom. LCModel
takes approximately 6.75 s to quantify one spectrum.
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Fig. 11. The Bland-Altman analysis for tNAA∕tCr from 15 in vivo spectra of healthy
volunteers. Each square represents the quantified result for each spectrum. The
horizontal and vertical axes indicate the mean and difference, respectively, of the
quantified results by the two quantification methods.

4.2.2. Quantitative results of QNet
The result of quantification by QNet for the same spectrum in Sec-

tion 4.2.1 is shown in Fig. 8. QNet only provides relative concentrations
of metabolites. QNet only takes approximately 5.00 s to quantify one
spectrum.

4.3. Statistical analysis

MCI patients has been identified as a high risk group for demen-
tia [53]. MRS can detect biomarkers of MCI for early diagnosis and
tracking disease progression [54]. MCI patients have shown lower
levels of NAA∕Cr and Glx∕Cr compared with healthy controls [55].

12 spectra (Philips RAW data) from healthy volunteers and 14 spec-
tra from MCI patients were uploaded to CloudBrain-MRS for statistical
analysis. Two relative metabolite concentrations, NAA∕Cr and Glx∕Cr
were selected to evaluate the differences between groups. The results
of the independent t-test and box plots generated using the platform
are presented in Figs. 9 and 10. Compared with the healthy controls,
MCI patients show decreased levels of NAA∕Cr (1.387 ± 0.557 for
patients, 2.187 ± 0.99 for healthy volunteers) with p = 0.02 and Glx∕Cr
(1.237 ± 0.332 for patients, 0.293 ± 0.038 for healthy volunteers) with
p = 0.037. Therefore, it can be concluded that there are statistically
significant differences in the two relative metabolite concentrations
between groups. Users can download and save charts of statistical
analysis results.

4.4. Consistency analysis

15 spectra (Philips RAW data) from healthy volunteers were up-
loaded to CloudBrain-MRS to check the consistency between QNet and
LCModel.

The Bland-Altman analysis of relative concentration tNAA∕tCr is
shown in Fig. 11. The solid line represents the mean difference between
the two methods in tNAA∕tCr is 0.031. The p-value is the result of the
independent t-test performed with the Standard Normal Distribution
(SND) on the scatter plot, and the result is greater than 0.05, indicating
no significant difference between the two methods in tNAA∕tCr ratio.
±1.96SD (standard deviation) is used to represent the upper and lower
limits of agreement, obtaining a 95% confidence interval. In Fig. 11,
96% of the points fall within the confidence interval. These results sug-
gest that QNet and LCModel have high consistency in the quantification
results of tNAA∕tCr for these spectra. Additionally, Fig. 12 compares
the box plots of tNAA∕tCr ratio estimated by QNet and LCModel.
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Fig. 12. Comparison of the tNAA∕tCr ratio estimated by QNet and LCModel with box
plots. The metabolite concentration range from the literature is marked with the upper
and lower dashed lines and the mean value is indicated by the middle dashed line.

For tNAA∕tCr, both methods estimated the concentrations within the
reasonable range [23,24,49–51], i.e. the distribution of concentrations
is between the upper and lower dashed lines.

5. Conclusion

We have developed CloudBrain-MRS, a cloud computing platform
that deploys both artificial intelligence and classic algorithms to quan-
tify MRS signals. Users can preprocess, quantify, and analyze MRS data
in batches through an online browser without the need for environment
installation or code compilation. CloudBrain-MRS is an open-access
platform at https://csrc.xmu.edu.cn/CloudBrain.html, and it also has
been shared on MRSHub, we will continue to do so for the next two
years. Whether it will still be free depend on whether China Mobile
will continue to provide the cloud computing services support for
free. For further improvement, CloudBrain-MRS will be validated with
large-scale data and more useful algorithms will be deployed for more
manufacturers and data types. To assist clinical research and diagnosis,
we will enhance the analytical capabilities of the platform to generate
examination reports using biomarkers and provide preliminary disease
classification for reference by doctors. CloudBrain-MRS will be made
into platform of quantification, and analyzation for MRS with a stan-
dard processing pipeline to serve the MRS research community. To
verify the reliability of CloudBrain-MRS, more doctors and experts are
expected to try it out.
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