
This is an Accepted Manuscript, which has been through the  
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
author guidelines.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the ethical guidelines, outlined 
in our author and reviewer resource centre, still apply. In no 
event shall the Royal Society of Chemistry be held responsible 
for any errors or omissions in this Accepted Manuscript or any 
consequences arising from the use of any information it contains. 

Accepted Manuscript

rsc.li/chemcomm

ChemComm
Chemical Communications
www.rsc.org/chemcomm

ISSN 1359-7345

COMMUNICATION
Marilyn M. Olmstead, Alan L. Balch, Josep M. Poblet, Luis Echegoyen et al. 
Reactivity diff erences of Sc

3
N@C

2n
 (2n = 68 and 80). Synthesis of the 

fi rst methanofullerene derivatives of Sc
3
N@D

5h
-C

80

Volume 52 Number 1 4 January 2016 Pages 1–216

ChemComm
Chemical Communications

View Article Online
View Journal

This article can be cited before page numbers have been issued, to do this please use:  X. Qu, T. Qiu, D.

Guo, H. Lu, J. Ying, M. Shen, B. Hu, V. Orekhov and Z. Chen, Chem. Commun., 2018, DOI:

10.1039/C8CC06132G.

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/
http://dx.doi.org/10.1039/c8cc06132g
https://pubs.rsc.org/en/journals/journal/CC
http://crossmark.crossref.org/dialog/?doi=10.1039/C8CC06132G&domain=pdf&date_stamp=2018-08-31


 ChemComm  

COMMUNICATION 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 1  

Please do not adjust margins 

Please do not adjust margins 

Received 00th January 20xx, 

Accepted 00th January 20xx 

DOI: 10.1039/x0xx00000x 

www.rsc.org/ chemcomm 

High-fidelity Spectroscopy Reconstruction in Accelerated 

NMR 
Xiaobo Qu*

[a]
, Tianyu Qiu

[a]
, Di Guo

[b]
, Hengfa Lu

[a]
, Jiaxi Ying

[a]
, Ming Shen

[c]
, Bingwen Hu

[c]
, 

Vladislav Orekhov
[d]

, and Zhong Chen
[a]

 

Abstract: Non-uniform sampling significantly accelerates the data 

acquisition time in NMR spectroscopy, but spectra must be 

reconstructed with proper methods. A high-fidelity reconstruction 

method is proposed to preserve low-intensity spectral peaks and 

provide stable reconstruction under different sampling trials.  

High-resolution NMR spectroscopy plays an important role in 

modern biochemical analysis, such as characterizing complex 

protein structures1, studying short-lived molecular systems 2 and 

monitoring real time chemical reactions 3, 4. The data acquisition 

time of NMR, however, increases rapidly with spectral resolution 

and dimensionality. To reduce the measurement time, Non-Uniform 

Sampling (NUS) acquires fewer data and incorporates computational 

models to reconstruct the spectra5-11.  

A fundamental feature of NUS-NMR is the trade-off between the 

spectra quality and acceleration factor. In order to obtain a good 

spectrum, one needs to use both the optimal sampling scheme, e.g. 

Poisson-gap sampling 12 or spatiotemporally encoded ultrafast 

(STEU) NMR 8, 13, and an optimal spectra reconstruction algorithms. 

The later often differ in their prior assumptions on the spectrum 

and/or time-domain signal. Examples of priors are maximum 

entropy9, spectrum sparsity in CLEAN7 and compressed sensing 8, 14-

19, spectral line-shape estimation in SMLIE 11, and tensor structures 

in MDD 6 or Hankel tensors20.  

A recent progress was a low rank (LR) approach10 that models the 

time-domain NMR signal, also called free induction decay (FID), as 

a sum of a few decaying sine waves (or exponentials) 20-23. From this 

model, it follows that the FID can be arranged into a Hankel matrix 

whose rank is equal to the number of spectral peaks. Assuming that 

the number of peaks is much smaller than the number of FID data 

points, the spectrum can be faithfully reconstructed by enforcing low 

rank of the Hankel matrix 10, 20, 22. It was shown that the low rank 

approach can outperform the state-of-the-art compressed sensing 

algorithm on preserving low intensity broad peaks, and thus 

increases effective sensitivity in the reconstructed spectra 10. 

However, at sufficiently high acceleration factor, the LR fails to 

reproduce high quality spectrum and the question arises if a better 

algorithm can be designed to reduce the sampling requirement? 

Figure 1 shows an obvious peak distortion in the LR spectrum, when 

only 10% data (acceleration factor is 10) are sampled in synthetic 

signal. An intuitive explanation of LR failure  is that its objective 

function10, nuclear norm defined as the sum of singular values 24, is a 

relatively poor approximation of the rank function, which is the 

count of the spectral peaks. As an example shown in Figure 1(a), the 

true rank function allows all the nonzero singular values of a matrix 

have equal contributions, but the nuclear norm used in the LR 10 

treats the singular values differently . As a result, the LR has the 

tendency to discard or weaken small singular values 25 when 

minimizing the nuclear norm. This means that low intensity peaks 

may be lost or compromised in the reconstruction since a small 

singular value usually corresponds to a low intensity peak.  

In this work, we introduce a better approximation of the rank 

function 26 as shown in Figure 1(a), and a new reconstruction model 

is proposed to infer the NUS data. A rescaling function φ  of the 

singular values is defined as   

 

2 1
,

2
( ( ); )

1 1
,

2

qq q

q

q

a

a
a

a a

σσ σ
φ σ

σ

 ≤−
= 
 ≥


X  , (1) 

where qσ denotes the qth singular value of a matrix X and a  is a 

parameter that controls the closeness to the rank. As shown in Figure 

1(a), as a  gets larger, φ  better approaches the rank and 

consequently the number of peaks. By incorporating the Hankel 

matrix of FID x , an ultimate reconstruction model is 
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Fig. 1 Functions approximating the matrix rank and the 

reconstructions of the synthetic spectrum containing five peaks 

with different line widths. (a) blue, and red curves represent 

approximation of the matrix rank (green) with nuclear norm and the 

new function (Eq. 1), respectively; (b) the reference fully sampled 

spectrum, (c) and (d) are the LR and ECLR reconstructions, 

respectively, obtained from 10% NUS, (e) correlation analysis of 

spectral intensities in small regions, which are around the peaks (3 

times the line width) between the full reference spectrum and the 

LR (c) and ECLR (d) reconstructions. The error bars are the standard 

deviations of the correlations over 100 NUS resampling trials. 

where U  is an operator of NUS schedule, y  is the acquired NUS 

data, R denotes an operator that transforms x   into a Hankel matrix

xR  , Q  stands for total number of singular values of the Hankel 

matrix, and λ  trades low rank approximation of the reconstruction 

x  with consistency to acquired NUS data y . In implementation, we 

start from a small a  and then increases its value to achieve better 

spectroscopy reconstruction. The whole algorithm is summarized in 

supplementary Appendix A. In the following description, this new 

approach is called EnhanCed Low Rank (ECLR) method. 

Figure 1 shows a comparison between a synthetic fully sampled 

spectrum composed of five peaks with different widths and 

reconstructions obtained using the LR and the proposed ECLR. Low 

intensity peaks (peaks #1 and #2 in Figure 1(c)), which are seriously 

distorted by LR, are reconstructed much better by ECLR (Figure 

1(d)). This improvement has been further confirmed by the higher 

correlation of low intensity spectral peaks (Figure 1(e)). Besides, 

correlations of other relatively stronger peaks (peak #3, #4, #5 in 

Figure 1(e)) have also been increased with ECLR, implying that the 

new approach can simultaneously improve the reconstruction of all 

peaks. What is more, much lower error bars achieved by ECLR 

indicate that the new method is more robust to different NUS trials, 

leading to more stable reconstruction. These observations imply that 

the ECLR has advantages on preserving low intensity peaks and 

providing more stable reconstruction. 

Figure 2 shows reconstructed 2D 1H-15N HSQC spectrum of the 

intrinsically disordered cytosolic domain of human CD79b protein 

from B-cell receptor. When only very limited data are available in 

NUS (25% of full data in this case), LR produced artefact peaks 

(peak D in Figure 2(b)), weakened or lost low intensity peaks (blue 

dashed lines in Figure 2(e) and (f)). The reconstruction by ECLR is 

significantly better. Particularly, weak peaks are restored (red lines 

in Figure 2(e) and (f)). The limitation of LR on recovering low 

intensity peaks was also observed in another experiment of the 2D 
1H-1H double-quantum solid NMR spectrum (Figure 3(b) and (c)). 

Peak intensity regression evaluation (Figure 3(d) and (e)) on the 

solid NMR spectra further demonstrated that the spectrum obtained 

by ECLR was more consistent to the reference spectrum than that 

obtained by LR. Thus, ECLR provides more faithful reconstruction 

and can achieve higher practical sensitivity in fast NMR with NUS.  

 

 

Fig. 2. 2D 
1
H-

15
N HSQC spectrum of the cytosolic domain of CD79b 

protein from B-cell receptor. (a) the fully sampled reference 

spectrum, (b) and (c) are the reconstructions using LR and ECLR 

from 25% NUS data, (d)-(f) are zoom out 1D 
15

N traces, and green, 

blue, and red lines represent reference, the LR and ECLR spectra, 

respectively. 
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Fig. 3. Reconstruction of a solid NMR spectrum. (a) is the fully 

sampled reference spectrum, (b) and (c) are reconstructed spectra 

from 15% NUS data by LR and ECLR, respectively, (d) and (e) are the 

peak intensity correlations achieved by LR and ECLR, respectively. 

Note: The notation R
2
 denotes Pearson linear correlation coefficient 

of fitted curve. The closer that the value of R
2
 gets to 1, the stronger 

the correlation between reference and reconstructed spectra is.  

Beyond the typical NUS that reduces the data acquisition time in 

indirect NMR dimensions, the STEU enables the ultrafast spectra 

acquisition within seconds 8. The acquired signals, however, may 

need to be recovered when NUS is applied to reduce the 

instrumental gradient requirement 8. Although compressed sensing 

has been applied to restore the missing data, it was recently found 

that the original LR can reconstruct the spectrum much better 27. 

Then, extending ECLR into STEU NMR, will be valuable since 

weak signals may be reconstructed much better.  

Figure 4 shows the reconstruction of STEU COSY spectrum 

obtained from a liver fat sample. The weak peaks haven been 

restored much better when using ECLR (Figure 4(c)) than LR 

(Figure 4(b)). To demonstrate more biomedical meanings of the new 

algorithm, we quantify volumes of the spectral cross-peak that 

reflect the ratio of different components in the intrahepatic fat, and 

thus carry important information for diagnostics of liver diseases 28. 

Statistical analysis of the peak volumes is listed in the Table S1 of 

the supplement. The normalized quantification of the volume errors 

(Figure 4(d)) implies that ECLR achieves consistently higher 

accuracy for all cross-peaks, with the largest improvement for the 

low intensity signals. Thus, spectra reconstructed by ECLR provides 

much better data for defining the ratio of different components in the 

intrahepatic fat. Furthermore, the much lower error bars imply more 

stable reconstruction under different NUS sampling trials. 

We introduce a new approach for reconstruction of NMR spectra 

from very limited number of NUS data points. The method allows 

faithful and stable spectra reconstruction with the main improvement 

for low intensity peaks. Reconstruction on the spectrum of a liver fat 

sample clearly demonstrate that peaks with small volumes have been  

 

Fig. 4. Reconstruction of a STEU spectrum. (a) The full sampled STEU 

COSY spectrum, (b) and (c) are reconstructed spectra from 20% NUS 

data by LR and ECLR, respectively, (d) normalized quantification of 

the volume errors. Note: Peak #1~#9 are descending sorted 

following their volumes listed in Table S1 of the supplement. The 

error bars in (d) represent the deviation of the normalized 

quantification error from 10 different NUS trials. 

quantitatively measured much better. This approach is particularly 

valuable to fast decaying NMR signals, thus may be very useful for 

short living systems, time resolved experiments, and many other 

practical cases. 
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Figure: Table Of Contents Entry.  
High-fidelity spectra, particularly low intensity peaks, are reconstructed for fast NMR with better rank 

approximation in EnhanCed Low Rank (ECLR).  
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