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Abstract 21 

Mild cognitive impairment (MCI) is the prodromal stage of Alzheimer’s disease (AD). Identifying 22 
MCI subjects who are at high risk of converting to AD is crucial for effective treatments. In this study, 23 
a deep learning approach based on convolutional neural networks (CNN), is designed to accurately 24 
predict MCI-to-AD conversion with magnetic resonance imaging (MRI) data. First, MRI images are 25 
prepared with age-correction and other processing. Second, local patches, which are assembled into 26 
2.5 dimensions, are extracted from these images. Then, the patches from AD and normal controls (NC) 27 
are used to train a CNN to identify deep learning features of MCI subjects. After that, structural brain 28 
image features are mined with FreeSurfer to assist CNN. Finally, both types of features are fed into an 29 
extreme learning machine classifier to predict the AD conversion. The proposed approach is validated 30 
on the standardized MRI datasets from the Alzheimer's Disease Neuroimaging Initiative (ADNI) 31 
project. This approach achieves an accuracy of 79.9% and an area under the receiver operating 32 
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characteristic curve (AUC) of 86.1% in leave-one-out cross validations. Compared with other state-of-33 
the-art methods, the proposed one outperforms others with higher accuracy and AUC, while keeping a 34 
good balance between the sensitivity and specificity. Results demonstrate great potentials of the 35 
proposed CNN-based approach for the prediction of MCI-to-AD conversion with solely MRI data. Age 36 
correction and assisted structural brain image features can boost the prediction performance of CNN. 37 

1 Introduction 38 

Alzheimer’s disease (AD) is the cause of over 60% of dementia cases (Burns and Iliffe, 2009), in 39 
which patients usually have a progressive loss of memory, language disorders and disorientation. The 40 
disease would ultimate lead to the death of patients. Until now, the cause of AD is still unknown, and 41 
no effective drugs or treatments have been reported to stop or reverse AD progression. Early diagnosis 42 
of AD is essential for making treatment plans to slow down the progress to AD. Mild cognitive 43 
impairment (MCI) is known as the transitional stage between normal cognition and dementia 44 
(Markesbery, 2010), about 10% to 15% individuals with MCI progress to AD per year (Grundman et 45 
al., 2004). It was reported that MCI and AD were accompanied by losing gray matter in brain (Karas 46 
et al., 2004), thus neuropathology changes could be found several years before AD was diagnosed. 47 
Many previous studies used neuroimaging biomarkers to classify AD patients at different disease 48 
stages or to predict the MCI-to-AD conversion (Cuingnet et al., 2011; Zhang et al., 2011; Tong et al., 49 
2013; Guerrero et al., 2014; Suk et al., 2014; Cheng et al., 2015; Eskildsen et al., 2015; Li et al., 2015; 50 
Liu et al., 2015; Moradi et al., 2015; Tong et al., 2017). In these studies, structural magnetic resonance 51 
imaging (MRI) is one of the most extensively utilized imaging modality due to non-invasion, high 52 
resolution and moderate cost. 53 

To predict MCI-to-AD conversion, we separate MCI patients into two groups by the criteria that 54 
whether they convert to AD within 3 years or not (Moradi et al., 2015; Tong et al., 2017). These two 55 
groups are referred to as MCI converters and MCI non-converters. The converters generally have more 56 
severe deterioration of neuropathology than that of non-converters. The pathological changes between 57 
converters and non-converters are similar to those between AD and NC, but much milder. Therefore, 58 
it much more difficult to classify converters/non-converters than AD/NC.. This prediction with MRI  59 
is challenging because the pathological changes related to AD progression between MCI non-converter 60 
and MCI converter are subtle and inter-subject variable. For example, ten MRI-based methods for 61 
predicting MCI-to-AD conversion and six of them perform no better than random classifier (Cuingnet 62 
et al., 2011). To reduce the interference of inter-subject variability, MRI images are usually spatially 63 
registered to a common space (Coupe et al., 2012; Young et al., 2013; Moradi et al., 2015; Tong et al., 64 
2017). However, the registration might change the AD related pathology and loss some useful 65 
information. The accuracy of prediction is also influenced by the normal aging brain atrophy, with the 66 
removal of age-related effect, the performance of classification was improved (Dukart et al., 2011; 67 
Moradi et al., 2015; Tong et al., 2017).  68 

Machine learning algorithms perform well in computer-aided predictions of MCI-to-AD conversion 69 
(Dukart et al., 2011; Coupe et al., 2012; Wee et al., 2013; Young et al., 2013; Moradi et al., 2015; 70 
Beheshti et al., 2017; Cao et al., 2017; Tong et al., 2017). In recent years, deep learning, as a promising 71 
machine learning methodology, has made a big leap in identifying and classifying patterns of images 72 
(Li et al., 2015; Zeng et al., 2016; Zeng et al., 2018). As the most widely used architecture of deep 73 
learning, convolutional neural networks (CNN) has attracted a lot of attention due to its great success 74 
in image classification and analysis (Gulshan et al., 2016; Nie et al., 2016; Shin et al., 2016; Rajkomar 75 
et al., 2017; Du et al., 2018). The strong ability of CNN motivates us to develop a CNN-based 76 
prediction method of AD conversion. 77 

   In this work, we propose a CNN-based prediction approach of AD conversion using MRI images. A 78 
CNN-based architecture is built to extract high level features of registered and age-corrected 79 
hippocampus images for classification. To further improve the prediction, more morphological 80 
information is added by including FreeSurfer-based features (FreeSurfer, RRID:SCR_001847) (Fischl 81 
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and Dale, 2000; Fischl et al., 2004; Desikan et al., 2006; Han et al., 2006). Both CNN and FreeSurfer 82 
features are fed into an extreme learning machine as classifier, which finally makes the decision of 83 
MCI-to-AD. Our main contributions to boost the prediction performance include: 1) Multiple 2.5D 84 
patches are extracted for data augmentation in CNN; 2) both AD and NC are used to train the CNN, 85 
digging out important MCI features; 3) CNN-based features and FreeSurfer-based features are 86 
combined to provide complementary information to improve prediction. The performance of the 87 
proposed approach was validated on the standardized MRI datasets from the Alzheimer's Disease 88 
Neuroimaging Initiative (ADNI - Alzheimer's Disease Neuroimaging Initiative, RRID:SCR_003007) 89 
(Wyman et al., 2013) and  compared with other state-of-the-art methods (Moradi et al., 2015; Tong et 90 
al., 2017) on the same datasets.  91 

2 Materials and methods 92 

The proposed framework is illustrated in Figure 1. The MRI data were processed through two paths, 93 
which extract the CNN-based and FreeSurfer-based image features, respectively. In the left path, CNN 94 
is trained on the AD/NC image patches and then is employed to extract CNN-based features on MCI 95 
images. In the right path, FreeSurfer-based features which were calculated with FreeSurfer software. 96 
These features, which were further mined with dimension reduction and sparse feature selection via 97 
PCA and Lasso, respectively, were concatenated as a features vector and fed to extreme learning 98 
machine as classifier. Finally, to evaluate the performance of the proposed approach, the leave-one-out 99 
cross validation is then used. 100 

ADNI data 101 

Data used in this work were downloaded from the ADNI database. The ADNI is an ongoing, 102 
longitudinal study designed to develop clinical, imaging, genetic, and biochemical biomarkers for the 103 
early detection and tracking of AD. The ADNI study began in 2004 and its first six-year study is called 104 
ADNI1. Standard analysis sets of MRI data from ADNI1 were used in this work, including 188 AD, 105 
229 NC and 401 MCI subjects (Wyman et al., 2013). These MCI subjects were grouped as: 1) MCI 106 
converters who were diagnosed as MCI at first visit, but converted to AD during the longitudinal visits 107 
within 3 years (n = 169); 2) MCI non-converters who did not convert to AD within 3 years (n = 139). 108 
The subjects who were diagnosed as MCI at least twice, but reverse to NC at last, are also considered 109 
as MCI non-converters; 3) Unknown MCI subjects who missed some diagnosis which made the last 110 
state of these subjects was unknown (n = 93). The demographic information of the dataset are presented 111 
in Table 1. The age ranges of different groups are similar. The proportions of male and female are close 112 
in AD/NC groups while proportions of male are higher than female in MCI groups. 113 

Image preprocessing 114 

MRI images were preprocessed following steps in (Tong et al., 2017). All images were first skull-115 
stripped according to (Leung et al., 2011), and then aligned to the MNI151 template using a B-spline 116 
free-form deformation registration (Rueckert et al., 1999). In the implementation, we follow the Tong’s 117 
way to register images (Tong et al., 2017), showing that the effect of deformable registration with a 118 
control point spacing between 10 and 5 mm have the best performance in classifying AD/NC and 119 
converters/non-converters.  After that, image intensities of the subjects were normalized by deform the 120 
histogram of each subject’s image to match the histogram of the MNI151 template (Nyul and Udupa, 121 
1999). Finally, all MRI images were in the same template space and had the same intensity range. 122 

Age correction 123 

Normal aging has atrophy effects similar with AD (Giorgio et al., 2010). To reduce the confounding 124 
effect of age-related atrophy, age correction is necessary to remove age-related effects, which is 125 
estimated by fitting a pixel regression model (Dukart et al., 2011) to the subjects’ ages. We assume 126 
there are N healthy subjects and M voxels in each preprocessed MRI image, and denote ym∈R1×N as 127 
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the vector of the intensity values of N healthy subjects at mth voxel, and α∈R1×N as the vector of the 128 
ages of N healthy subjects. The age-related effect is estimated by fitting linear regression model 129 
ym=ωmα+bm at mth voxel. For nth subject, the new intensity of mth voxel can be calculated as y’mn=ωm(C-130 
αn)+ ymn, where ymn is original intensity, αn is age of nth subject. In this study, C is 75, which is the 131 
mean age of all subjects. 132 

CNN-based features 133 

A CNN was adopted to extract features from MRI Images of NC and AD subjects. Then, the trained 134 
CNN was used to extract image features of MCI subjects. To explore the multiple plane images in MRI, 135 
a 2.5D patch was formed by extracting three 32×32 patches from transverse, coronal and sagittal plane 136 
centered at a same point (Shin et al., 2016). Then, three patches were combined into a 2D RBG patch. 137 
Figure 2 shows an example of constructing 2.5D patch. For a given voxel point, three patches of MRI 138 
are extracted from three planes and then concatenated into a three channel cube, following the same 139 
way of composing a colorful patch with red/green/blue channels that are commonly used in computer 140 
vision. This process allows us to mine fruitful information form 3D views of MRI by feeding the 2.5D 141 
patch into the typical color image processing CNN network. Data augmentation (Shin et al., 2016) was 142 
used to increase training samples, by extracting multiple patches at different locations from MRI 143 
images. The choice of locations has three constraints, 1) The patches must be originated in either left 144 
or right hippocampus region which have high correlation with AD (van de Pol et al., 2006); 2) There 145 
must be at least two voxels distance between each location; 3) All locations were random chosen. With 146 
these constraints, 151 patches were extracted from each image and the sampling positions were fixed 147 
during experiments. The number of samples was expanded by a factor of 151, which could reduce 148 
over-fitting.  149 

Typically extracted patches are presented in Figure 3. Figure 3(A) shows four 2.5D patches obtained 150 
from one subject. These patches are extracted from different positions and show different portions of 151 
hippocampus, which means these patches contain different information of morphology of hippocampus. 152 
When trained with these patches that spread in whole hippocampus, CNN learns the morphology of 153 
whole hippocampus. Figure 3(B) shows patches extracted in same position from four subjects of 154 
different groups, demonstrating that the AD subject has the most severe atrophy of hippocampus and 155 
expansion of ventricle. This implies that obvious differences are existed between AD and NC. However, 156 
the MCI subjects have the medium atrophy of hippocampus, and non-converter is more like NC rather 157 
than AD, and converter is more similar to AD. The difference between converter and non-converter is 158 
smaller than the difference between AD and NC. 159 

The architecture of the CNN is summarized in Figure 4. The network has an input of 32×32 RGB 160 
patch. There are three convolutional layers and three pooling layers. The kernel size of convolutional 161 
layer is 5×5 with 2 pixels padding, and the kernel size and stride of pooling layers is 3×3 and 2. The 162 
input patch has a size of 32×32 and 3 RBG channels. The first convolutional layer generates 32 feature 163 
maps with a size of 32×32. After max pooling, these 32 feature maps were down-sampled into 16×16. 164 
The next two convolutional layers and average pooling layers finally generate 64 features maps with a 165 
size of 4×4. These features are concatenated as a feature vector, and then fed to full connection layer 166 
and softmax layer for classification. There are also rectified linear units layers and local response 167 
normalization layers in CNN, but are not shown for simplicity. 168 

The CNN was trained with patches from NC and AD subjects, and there are 62967 (subject number 169 
417 times 151) patches which are randomly split into 417 mini-batches. Mini-batch stochastic gradient 170 
descent was used to update the coefficients of CNN. In each step, a mini-batch was fed into CNN, and 171 
then error back propagation algorithm was carried out to computer gradient gj of jth coefficient θj, and 172 
update the coefficient as θ’j=θj +▽θn 

j , in which ▽θn 
j =m▽θn-

1 j- η(gj+λθj) is the increment of θj at nth step. 173 
The momentum m, learning rate η and weight decay λ are set as 0.9, 0.001 and 0.0001, respectively in 174 
this work. It is called one epoch with all mini-batches used to train CNN once. The CNN was trained 175 
with 30 epochs. Once the network was trained, CNN will be used to extract high level features of MCI 176 
subjects’ images. The 1024 features output by the last pooling layer were taken as CNN-based features. 177 
Thus, CNN generates 154624 (1024×151) features for each image. 178 
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FreeSurfer-based features 179 

The FreeSurfer (version 4.3) (Fischl and Dale, 2000; Fischl et al., 2004; Desikan et al., 2006; Han 180 
et al., 2006) was used to mine more morphological information of MRI images, such as cortical volume, 181 
surface area, cortical thickness average and standard deviation of thickness in each region of interest. 182 
These features can be downloaded directly from ADNI website, and 325 features are used to predict 183 
MCI-to-AD conversion after age correction. The age correction for FreeSurfer-based features is similar 184 
as described above, but on these 325 features instead of on intensity values of MRI images. 185 

Features selection 186 

Redundant features maybe exist among CNN-based features, thus we introduced the principle 187 
component analysis (PCA) (Avci and Turkoglu, 2009; Babaoğlu et al., 2010; Wu et al., 2013) and least 188 
absolute shrinkage and selection operator (LASSO) (Kukreja et al., 2006; Usai et al., 2009; Yamada et 189 
al., 2014) to reduce the final number of features. 190 

PCA is an unsupervised learning method that uses an orthogonal transformation to convert a set of 191 
samples consisting of possibly correlated features into samples consisting of linearly uncorrelated new 192 
features. It has been extensively used in data analysis (Avci and Turkoglu, 2009; Babaoğlu et al., 2010; 193 
Wu et al., 2013). In this work, PCA is adopted to reduce the dimensions of features. Parameters of 194 
PCA are: 1) For CNN-based features, there are 1024 features for each patch. After PCA, PC features 195 
were left for each patch, since there are 151 patches for one subject, there are still PC×151 features for 196 
each subject.; 2) For FreeSurfer-based features, PF features were left for each MCI subject. 197 

LASSO is a supervised learning method that uses L1 norm in sparse regression (Kukreja et al., 2006; 198 
Usai et al., 2009; Yamada et al., 2014) as follows:  199 

ܖܑܕ
હ
ܡ||0.5	 െ ۲હ||ଶ

ଶ
  હ||ଵ                                             (1) 200||ߣ

Where y∈R1×N is the vector consisting of N labels of training samples, D∈RN×M  is the feature 201 
matrix of N training samples consisting of M features, λ is the penalty coefficient that was set to 0.1, 202 
and α∈R1×M is the target sparse coefficients and can be used for selecting features with large 203 
coefficients. The LASSO was solved with least angle regression (Efron et al., 2004), and L features are 204 
selected after L iterations. Parameters of LASSO are: 1) For CNN-based features, LC features were 205 
selected from PC×151 features for each MCI subject; 2) For FreeSurfer-based features, LF features 206 
were selected from PF features. After PCA and LASSO, there were LC+LF features.  207 

Figure 5 shows more details of CNN-based features. 151 patches are extracted from all MRI images, 208 
including AD, NC and MCI. First, the CNN is trained with patches of all AD and NC subjects. After 209 
that, the trained CNN is used to output 1024 features from each MCI patch. The 1024 features of each 210 
patch are reduced to PC features by PCA, and then features of all 151 patches from one subject are 211 
concatenated, and Lasso is used to select LC most informative features from them. 212 

Extreme learning machine 213 

The extreme learning machine, a feed-forward neural network with a single layer of hidden nodes, 214 
learns much faster than common networks trained with back propagation algorithm (Huang et al., 2012; 215 
Zeng et al., 2017). A special extreme learning machine, that adopts kernel (Huang et al., 2012) to 216 
calculates the outputs as formula (2) and avoids the random generation of input weight matrix, is 217 
chosen to classify converters/non-converters with both CNN-based features and FreeSurfer-based 218 
features. In formula (2), the Ω is a matrix with elements Ωi,j=K(xi, xj), where K(a, b) is a radial basis 219 
function kernel in this study, [x1,…, xN] are N training samples, y is the label vector of training samples, 220 
and x is testing sample. C is a regularization coefficient and was set to 1 in this study. 221 
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Implementation 223 

In our implementation, CNN was accomplished with Caffe1, LASSO was carried out with SPAMS2, 224 
and extreme learning machine was performed with shared online code 3 . The hippocampus 225 
segmentation was implemented with MALPEM 4(Ledig et al., 2015) for all MRI images. Then all 226 
hippocampus masks were registered as corresponding MRI images, and then overlapped to create a 227 
mask containing hippocampus regions. All image features were normalized to have zero mean and unit 228 
variance before training or selection. To evaluate the performance, Leave-one-out cross validation was 229 
used as (Coupé et al., 2012; Ye et al., 2012; Zhang et al., 2012). 230 

3 Results 231 

Validation of the robustness of 2.5D CNN 232 

    To validate the robustness of the CNN, several experiments have been performed with the CNN. In 233 
experiments, the binary decisions of CNN for 151 patches were united to make final diagnosis of the 234 
testing subject. We compared the performance in four different conditions:1) The CNN was trained 235 
with AD/NC patches and used to classify AD/NC subjects; 2) The CNN was trained with 236 
converters/non-converters patches and used to classify converters/non-converters; 3) The CNN was 237 
trained with AD/NC patches and used to classify converters/non-converters; 4) The condition is similar 238 
with 3), but with different sampling patches in each validation run.  239 

    The results are shown in Table 2. The CNN has a poor accuracy of 68.49% in classifying 240 
converters/non-converters when trained with converters/non-converters patches, but CNN has obtained 241 
a much higher accuracy of 73.04% when trained with AD/NC patches. This means that the CNN 242 
learned more useful information from AD/NC data than that from converters/non-converters data. And 243 
the prediction performance of CNN is close when different sampling patches are used. 244 

Effect of combining two types of features 245 

In this section, we present the performance of CNN-based features, FreeSurfer-based features, and 246 
their combinations. The PC, PF, LC and LF parameters were set to 29, 150, 35 and 40, respectively, 247 
which were optimized in experiments. Finally, 75 features were selected and fed to the extreme 248 
learning machine.  249 

Performance was evaluated by calculating accuracy (the number of correctly classified subjects 250 
divided by the total number of subjects), sensitivity (the number of correctly classified MCI converters 251 
divided by the total number of MCI converters), specificity (the number of correctly classified MCI 252 
non-converters divided by the total number of MCI non-converters), and AUC (area under the receiver 253 
operating characteristic curve). The performances of the proposed method and the approach with only 254 

                                                 
1 http://caffe.berkeleyvision.org/ 

2 http://spams-devel.gforge.inria.fr/ 

3 http://www.ntu.edu.sg/home/egbhuang/ 

4 http://www.christianledig.com/ 
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one type of features are summarized in Table 3. These results indicates that the approaches with only 255 
CNN-based features or FreeSurfer-based features have similar performances, and the proposed method 256 
combining both features achieved best accuracy, sensitivity, specificity and AUC. Thus, it is 257 
meaningful to combine two features in the prediction of MCI-to-AD conversion. The AUC of the 258 
proposed method reached 86.1%, indicating the promising performance of this method. The receiver 259 
operating characteristic (ROC) curves of these approaches are shown in Figure 6. 260 

Impact of age correction 261 

We investigated the impact of age correction on the prediction of conversion here. The prediction 262 
accuracy in Table 3 and the ROC curves in Figure 6 implied that age correction can significantly 263 
improve the accuracy and AUC, Thus, age correction is an important step in the proposed method. 264 

Comparisons to other methods 265 

In this section, we first compared the extreme learning machine with support vector machine and 266 
random forest. The performances of three classifiers are shown in Table 4, indicating that extreme 267 
learning machine achieves the best accuracy and AUC among three classifiers. 268 

Then we compared the proposed method with other state-of-the-art methods that use the same data 269 
(Moradi et al., 2015; Tong et al., 2017), which consists of 100 MCI non-converters and 164 MCI 270 
converters. In both methods, MRI images were first preprocessed and registered, but in different ways. 271 
After that, features selection was performed to select the most informative voxels among all MRI 272 
voxels. Moradi used regularized logistic regression algorithm to select a subset of MRI voxels, and 273 
Tong used elastic net algorithm instead. Both methods trained feature selection algorithms with AD/NC 274 
data to learn the most discriminative voxels and then used to selected voxels from MCI data. Finally, 275 
Moradi used low density separation to calculate MRI biomarkers and to predict MCI converters/non-276 
converters. Tong used elastic net regression to calculate grading biomarkers from MCI features, and 277 
SVM was utilized to classify MCI converters/non-converters with grading biomarker. 278 

For fair comparisons, both ten-fold cross validation and leave-one-out cross validation were 279 
performed on the proposed method and method of (Tong et al., 2017) with only MRI data was used. 280 
Parameters of the compared approaches were optimized to achieve best performance. Table 5 shows 281 
the performances of three methods in ten-fold cross validation and Table 6 summarizes the 282 
performances in leave-one-out cross validations. These two tables demonstrate that the proposed 283 
method achieves the best accuracy and AUC among three methods, which means that the proposed 284 
method is more accurate in predicting MCI-to-AD conversion than other methods. The sensitivity of 285 
the proposed method is a little lower than the method of (Moradi et al., 2015) but much higher than the 286 
method of (Tong et al., 2017), and the specificity of the proposed method is between other two methods. 287 
Higher sensitivity means lower rate of missed diagnosis of converters, and higher specificity means 288 
lower rate of misdiagnosing non-converters as converters. Overall, the proposed method has a good 289 
balance between the sensitivity and specificity. 290 

4 Discussions 291 

The CNN has a better performance when trained with AD/NC patches rather than MCI patches, we 292 
think the reason is that the pathological changes between MCI converters and non-converters are 293 
slighter than those between AD and CN. Thus, it is more difficult for CNN to learn useful information 294 
directly from MCI data about AD-related pathological changes than from AD/NC data. The 295 
pathological changes are also hampered by inter-subject variations for MCI data. Inspired by the work 296 
in (Moradi et al., 2015; Tong et al., 2017) which use information of AD and NC to help classifying 297 
MCI, we trained the CNN with the patches from AD and NC subjects and improved the performance.  298 
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After non-rigid registration, the differences between all subject’s MRI brain image are mainly in 299 
hippocampus (Tong et al., 2017). So we extracted 2.5D patches only from hippocampus regions, that 300 
makes the information of other regions lost. For this reason, we included the whole brain features 301 
calculated by FreeSurfer as complementary information. The accuracy and AUC of classification are 302 
increased to 79.9% and 86.1% from 76.9% and 82.9% with the help of FreeSurfer-based features. To 303 
explore which FreeSurfer-based features contribute mostly when they are used to predict MCI-to-AD 304 
conversion, we used Lasso to select the most informative features, and the top 15 features are listed in 305 
Table 7, in which the features are almost volume and thickness average of regions related to AD. The 306 
thickness average of frontal pole is the most discriminative feature. The quantitative features of 307 
hippopotamus are not listed, indicating they contribute less than these listed features when predicting 308 
conversion. The CNN extract the deep features of hippopotamus morphology, rather than the 309 
quantitative features of hippopotamus, which are discriminative for AD diagnosis. Therefore, The 310 
CNN-based features and FreeSurfer-based features contain different useful information for 311 
classification of converters/non-converters, and they are complementary to improve the performance 312 
of classifier. 313 

Different from the two methods used in (Moradi et al., 2015) and (Tong et al., 2017), which directly 314 
used voxels as features, the proposed method employs CNN to learn the deep features from the 315 
morphology of hippopotamus, and combined CNN-based features with the globe morphology features 316 
that were computed by FreeSurfer. We believe that the learnt CNN features might be more meaningful 317 
and more discriminative than voxels. When comparing with these two methods, only MRI data was 318 
used, but the performances of these two methods were improved when combined MRI data with age 319 
and cognitive measures, so investigating the combination of the propose approach with other modality 320 
data for performance improvement is also one of our future works. 321 

We have also listed several deep learning-based studies in recent years for comparison in Table 8. 322 
Most of them have an accuracy of predicting conversion above 70%, especially the last three 323 
approaches (including the proposed one) have the accuracy above 80%. The best accuracy was 324 
achieved by (Lu et al., 2018a), which uses both MRI and PET data. However, when only MRI data is 325 
used, Lu’s method declined the accuracy to 75.44%. Although an accuracy of 82.51% was also 326 
obtained with PET data (Lu et al., 2018b), PET scanning usually suffers from contrast agents and more 327 
expensive cost than the routine MRI. In summary, our approach achieved the best performance when 328 
only MRI images were used and is expected to be improved by incorporating other modality data, e.g. 329 
PET, in the future. 330 

In this work, the period of predicting conversion was set to 3 years, that separates MCI subjects into 331 
MCI non-converters and MCI converters groups by the criterion who covert to AD within 3 years. But 332 
not matter what the period for prediction is, there is a disadvantage that even the classifier precisely 333 
predict a MCI non-converters who would not convert to AD within a specific period, but the conversion 334 
might still happen half year or even one month later. Modeling the progression of AD and predicting 335 
the time of conversion with longitudinal data are more meaningful (Guerrero et al., 2016; Xie et al., 336 
2016). Our future work would investigate the usage of CNN in modeling the progression of AD. 337 

5 Conclusions 338 

In this study, we have developed a framework that only use MRI data to predict the MCI-to-AD 339 
conversion, by applying convolutional neural networks (CNN) and other machine learning algorithms. 340 
Results show that CNN can extract discriminative features of hippocampus for prediction by learning 341 
the morphology changes of hippocampus between AD and NC. And FreeSurfer provides extra 342 
structural brain image features to improve the prediction performance as complementary information. 343 
Compared with other state-of-the-art methods, the proposed one outperforms others in higher accuracy 344 
and AUC, while keeping a good balance between the sensitivity and specificity. 345 
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Table 1 504 
The demographic information of the dataset used in this work 505 

 AD NC MCIc MCInc MCIun 

Subjects’ number 188 229 169 139 93 

Age range 55-91 60-90 55-88 55-88 55-89 

Males/Females 99/89 119/110 102/67 96/43 60/33 
Note: MCIc means MCI converters. MCInc means MCI non-converters, MCIun means MCI unknown. 506 

Table 2 507 
The performance of the 2.5D CNN 508 

 Classifying: AD/NC 
Trained with: AD/NC 

Classifying: MCIc/MCInc 
Trained with: MCIc/MCInc

Classifying: MCIc/MCInc 
Trained with: AD/NC 

Different patch 
Sampling  

Accuracy 88.79% 68.68% 73.04% 72.75 % 

Standard deviation 0.61% 1.63% 1.31% 1.20 % 

Confidence interval [0.8862, 0.8897] [0.6821, 0.6914] [0.7265, 0.7343] [0.7252, 0.7299]

Note: MCIc means MCI converters. MCInc means MCI non-converters. The results were obtained with ten-fold cross validations, and 509 
averaged over 50 runs. 510 

Table 3 511 
The performance of different features used, and the performance without age correction. 512 

Method Accuracy Sensitivity Specificity AUC 

Proposed method (both features) 79.9% 84% 74.8% 86.1% 

Only CNN-based features 76.9% 81.7% 71.2% 82.9% 

Only FreeSurfer-based features 76.9% 82.2% 70.5% 82.8% 

Without age correction 75.3% 79.9% 69.8% 82.6% 

 513 

Table 4 514 
Comparison of extreme learning machine with other two classifiers. 515 

Method Accuracy Sensitivity Specificity AUC 

SVM 79.87% 83.43 % 75.54 % 83.85% 
Random forest 75.0% 82.84 % 65.47 % 81.99 % 
Extreme learning machine 79. 87% 84.02 % 74.82% 86.14 % 

Note: Implementation of SVM was performed using third party library LIBSVM (https://www.csie.ntu.edu.tw/~cjlin/libsvm/), and the 516 
random forest was utilized with the third party library (http://code.google.com/p/randomforest-matlab). Both classifiers used the default 517 
settings. 518 

Table 5 519 
Comparison with others methods on the same dataset in ten-fold cross validation. 520 

Method Accuracy Sensitivity Specificity AUC 

MRI biomarker in (Moradi et al., 2015) 74.7% 88.9% 51.6% 76.6% 

Global grading biomarker in (Tong et al., 2017) 78.9% 76.0% 82.9% 81.3% 

Proposed method 79.5% 86.1% 68.8% 83.6% 
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Note: The performances of MRI biomarker and global grading biomarker are described in (Moradi et al., 2015) and (Tong et al., 2017). 521 
The results are averages over 100 runs, and the standard deviation/confidence intervals of accuracy and AUC of the proposed method 522 
are 1.19% / [0.7922, 0.7968] and 0.83% / [0.8358, 0.8391]. 523 

Table 6 524 
Comparison with others methods on the same dataset in leave-one-out cross validation. 525 

Method Accuracy Sensitivity Specificity AUC 

MRI biomarker in (Moradi et al., 2015) - - - - 

Global grading biomarker in (Tong et al., 2017) 78.8% 76.2% 83% 81.2% 

Proposed method 81.4% 89.6% 68% 87.8% 

Note: The global grading biomarkers was download from the web described in (Tong et al., 2017) and the experiment was performed 526 
with same method as in (Tong et al., 2017). 527 

Table 7 528 
The 15 most informative FreeSurfer-based features for predicting MCI-to-AD conversion 529 

Number FreeSurfer-based feature 
1 Cortical Thickness Average of Left FrontalPole 
2 Volume (Cortical Parcellation) of Left Precentral 
3 Volume (Cortical Parcellation) of Right Postcentral 
4 Volume (WM Parcellation) of Left AccumbensArea 
5 Cortical Thickness Average of Right CaudalMiddleFrontal 
6 Cortical Thickness Average of Right FrontalPole 
7 Volume (Cortical Parcellation) of Left Bankssts 
8 Volume (Cortical Parcellation) of Left PosteriorCingulate 
9 Volume (Cortical Parcellation) of Left Insula 
10 Cortical Thickness Average of Left SuperiorTemporal 
11 Cortical Thickness Standard Deviation of Left PosteriorCingulate 
12 Volume (Cortical Parcellation) of Left Precuneus 
13 Volume (WM Parcellation) of CorpusCallosumMidPosterior 
14 Volume (Cortical Parcellation) of Left Lingual 
15 Cortical Thickness Standard Deviation of Right Postcentral 

 530 
Table 8 531 
Results of previous deep learning based approaches for predicting MCI-to-AD conversion 532 

Study Number of MCIc/MCInc Data Conversion time Accuracy AUC 
(Li et al., 2015) 99/56 MRI+PET 18 months 57.4% - 
(Singh et al., 2017) 158/178 PET - 72.47% - 
(Ortiz et al., 2016) 39/64 MRI+PET 24 months 78% 82% 
(Suk et al., 2014) 76/128 MRI+PET - 75.92% 74.66% 
(Shi et al., 2018) 99/56 MRI+PET 18 months 78.88% 80.1% 
(Lu et al., 2018a) 217/409 MRI+PET 36 months 82.93% - 
(Lu et al., 2018a) 217/409 MRI 36 months 75.44% - 
(Lu et al., 2018b) 112/409 PET - 82.51% - 
This study 164/100 MRI 36 months 81.4% 87.8% 

Note: MCIc means MCI converters. MCInc means MCI non-converters. Different subjects and modalities of data are used in these 533 
approaches. All the criteria are copied from the original literatures. 534 

Figure 1 535 
Framework of proposed approach. The dashed arrow indicates the CNN was trained with 2.5D patches 536 
of NC and AD subjects. The dashed box indicates Leave-one-out cross validation was performed by 537 
repeat LASSO and extreme learning machine 308 times, in each time one different MCI subject was 538 
leaved for test, and the other subjects with their labels were used to train LASSO and extreme learning 539 
machine. 540 
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Figure 2 541 
The demonstration of 2.5D patch extraction from hippocampus region. (A, B, C): 2D patches extracted 542 
from transverse (red box), coronal (green box) and sagittal (blue box) plane; (D): The 2.5D patch with 543 
three patches at their spatial locations, red dot is the center of 2.5D patch; (E): Three patches are 544 
combined into RGB patch as red (red box patch), green (green box patch) and blue (blue box patch) 545 
channels. 546 

Figure 3 547 
(A) Four random chosen 2.5D patches of one subject (who is normal control, female and 76.3 years 548 
old), indicating that these patches contain different information of hippocampus; (B) The comparison 549 
of correspond 2.5D patches of four subjects from four groups, the different level of hippocampus 550 
atrophy can be found. 551 

Figure 4 552 
The overall architecture of the CNN used in this work. 553 

Figure 5  554 
The workflow of extracting CNN-based features. The CNN was trained with all AD/NC patches, and 555 
used to extract deep features from all 151 patches of MCI subject. The feature number of each patch is 556 
reduced to PC (PC=29) from 1024 by PCA. Finally, Lasso selects LC (LC=35) features from PC×151 557 
features for each MCI subject. 558 

Figure 6 559 
The ROC curves of classifying converters/non-converters when different features used or without age 560 
correction. 561 

 562 
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