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Introduction:  Undersampling the k-space measurements can reduce the acquisition time in magnetic resonance imaging (MRI) at the cost of introducing the aliasing 
artifacts. The sparsity of magnetic resonance (MR) images in wavelet transforms shows promising results to suppress these artifacts [1]. Recently, the Gaussian Scale 
Mixture (GSM)[2] for modeling dependency of wavelet coefficients of single image improve the wavelet-based reconstruction[3-5]. In this paper, we consider the cases 
that MR study is comprised by many different types of images of the same patient (e.g. T1, T2, Proton density-PD, etc). By modeling the dependency of wavelet 
coefficients of the multi-component images, a multicomponent GSM (mGSM)-based iterative algorithm is proposed to jointly reconstruct these MR images from 
undersampled k-space measurements. Simulations demonstrate that this model can improve the reconstructed MR images than the traditional wavelet-based iterative 
hard thresholding (IHT) does for each image separately. 

Methods:  Let the image to be reconstructed be x  whose wavelet coefficients are T=α Ψ x  . The Ψ  denotes the wavelet basis and TΨ means the forward wavelet 

transform. The conventional compressed sensing MRI (CS-MRI) reconstruct image by solving 2
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exp expTp λ λ∝ − = −x Ψ x α .  For the multiple component MR image, the wavelet coefficients of all the images at a given spatial 

position j  in the same subband are grouped into a B-dimensional vector ,1 ,2 , Ts s s B
j j jα α α⎡ ⎤= ⎣ ⎦α L . Equivalent processing is typically applied to all the wavelet 

subbands hence s is omitted. Assume the aliased artifact is random Gaussian noise, then the wavelet coefficients of aliased multicomponent images can be expressed as 

z= + = +h α ε θ ε . The θ  is weighted by a scalar random variable z . Both θ  and ε  are assumed to be zero-mean Gaussians with covariance θC  and εC . The de-

aliased wavelet coefficients can be computed [2,3,6] according to  

 

 

 where E  is the expectation operator and ( ) ( ) 1,E z z z −= +α α εα h C C C h . The 

computation of αC , hC , ( )p z h  and ( )E α h is explained in [3,6]. With a 

decreasing variance of ε , the reconstructed image is obtained by thresholding on 

the aliased image x  using the Bayesian Least Squares (BLS)-GSM method[6]. 

The framework of the proposed method is shown in Fig.1.   
Results: The multicomponent MR images [6,8] utilized in simulation are T1, T2, and PD (low and high flip angle) weighted MR images as shown in the first row of 
Figure 2. These images are 1mm3 voxel resolution and 8 bit quantization from the 
BrainWeb phantom [7]. Each image is radially sampled in k-space with rate 15% and the 
locations of radial lines for each image are different. The iterative hard thresholding(IHT) 
for CS-MRI[9] with decreasing factor μ=0.95 of threshold is employed for each image 

separately to compare the performance with mGSM reconstruction. The initial variance 
of the aliased image is 10 and the decreasing factor is 0.9. Symlets 4 wavelet with 3 
decomposition levels in undecimated form is chosen in both methods.  The peak signal-
to-noise ratio (PSNR) is adopted to quantify the difference between the MR images 
reconstructed from fully sampled and undersampled k-space. PSNR is defined as 
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where MSE is the mean square error between the ground truth and 

reconstructed multicomponent images x%  and x̂ . Simulations show that the proposed 
method produces high fidelity images and better PSNR.  
Conclusions and Discussion:  The mGSM is introduced to model the dependency of 
wavelet coefficients of multicomponent MR images and a iterative method is proposed to 
joint reconstruct these images from undersampled k-space measurements. Simulations demonstrate the mGSM can improve the reconstruction than the iterative hard 
thresholding to reconstruct each image separately. For the future work, comparison on reconstruction of vivo data and for noisy measurements will be conducted.  
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Fig. 1 Reconstruct the multicomponent MR image using mGSM.
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the missing measurements in k-space of image x  with the corresponding 
measurements in k-space of the updated image x̂ . 

Fig.2 The reconstructed images with mGSM-based and iterative hard 
thresholding-based methods. (f) and (g) are reconstructed when sampling 

rate is 0.15. 
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