
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

1 

Appendix 
Proof of equivalence between (16) and (8) in the manuscript. 

Denoting that ( ) 2

1 2
1 / 2G λ= + −x Ψx y UFx , then one 

has  
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with ( ){ }| RangeΩ = ∈Φα α Ψ  where (a) from the property (6)

for ( )Range∈α Ψ , (b) and (c) are straightforward based on the 

definition of ( )G ⋅  and Ω . Next, we show that NΩ =  . On 
one hand, we have  
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x x α Ψx .  (A2) 
On the other hand, we have 
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(A2) and (A3) together leads to NΩ =  . This together with 
(A1) leads to 
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If *α  is a solution of (16) and *x  is a solution of  (8),  one has 

 ( ) ( ) ( )
(d) (e)

* * *G G G= =Φα x ΦΨx   (A5) 

where (d) from the second equation in (A1) and (A4), (e) from 
(3). Therefore, *Φα  is also a solution of the analysis model (8) 

and *Ψx  is also a solution of the synthesis-like model (16). 
This concludes the proof. 


