
APPENDIX A 

THE DETAILED DESCRIPTION OF OPERATOR G   

The G  is an operator that re-arranges pixels along a 

candidate geometrical directions [1]. All the candidate 

geometric directions are pre-defined in a patch and are 

uniformly partitioned in the interval [0, 2π]. The candidate 

directions are marked with the white lines shown in Fig. 1(a) 

and only 14 directions are presented as an illustrative example. 

The angle between the direction lines (red color in Fig. 1(b)) 

and the horizontal direction (dashed line in Fig. 1(b)) stands for 

these directions. Let the candidate directions be {𝜃1, 𝜃2, ⋯ , 𝜃𝑄} 

and a specified direction be 𝜃𝑑 ∈ {𝜃1, 𝜃2, ⋯ , 𝜃𝑄}, there is an 

associated direction line 𝐿𝜃𝑑  (red color in Fig. 1(b)) and its 

orthogonal line 𝐿𝜃𝑑
⊥  (blue color in Fig. 1(b)). Each patch pixel 

𝑥(𝑟𝑋, 𝑟𝑌) located at (𝑟𝑋, 𝑟𝑌) is orthogonally projected onto the 

line 𝐿𝜃𝑑
⊥  to get a new point 𝑥(𝑟𝜃𝑑

⊥ ), and pixels are reordered by 

the projected distance along the line 𝐿𝜃𝑑
⊥ . Finally, 64 pixels are 

used to produce a 1D column vector according to the order 

marked on each pixel in Fig. 1(c). 

By rotating the central line in a 8×8 patch, 71 is the maximal 

number that determines discrete grids to cover the pixels. This 

setting allows maximally explore the geometric directions in a 

patch. As the default parameter setting in PBDW [1], 71 

directions are pre-defined for 8×8 patches. We choose 71 

directions in FDLCP in order to have a fair comparison to 

PBDW. 

 

APPENDIX B 

IMAGE RECONSTRUCTIONS USING DIFFERENT SPARSIFYING 

DICTIONARIES/TRANSFORMS 

We compare our proposed reconstruction method with that 

using Curvelets [2] or Contourlets [3, 4] as the sparsifying 

transform in CS-MRI. We directly utilize these transforms to 

reconstruct MR image. A better reconstructed image implies the 

dictionary/transform achieves the sparser representation.  

The reconstruction model is 

 
1 2

min . .s t  
U

x
Ψx y F x   (A1) 

 

where Ψ  is the Curvelets or Contourlets transform. We use the 

public implementations of these two transforms [4, 5] shared by 

the respective authors. In the implementation, ADMM [6, 7] is 

adopted as the numerical algorithm to solve (A1). For 

Contourlets, we set 25, 24, 24, 23 directional sub-bands from 

coarse to fine scales, and employ the quincunx-type filter 

named pkva [8] and no downsampling of the low-pass sub-band 

at the first level decomposition. For Curvelets, we use 

wrapping-based fast discrete curvelets transform [5] with 5 

decomposition levels and 16 angles at the 2nd coarsest level. 

Parameters in the reconstruction are tuned to obtain the optimal 

performance of each transform. Reconstructed images in Fig. 2 

show that the proposed FDLCP achieves better image quality 

than Curvelets and Contourlets. 

 

APPENDIX C 

THE FDLCP USING L0 NORM PENALTY IN RECONSTRUCTION  

The reconstruction model of FDLCP using the l0 norm is 
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We also use the ADMM [6, 7] to solve the model. The whole 

process is the same as the Algorithm 2 except the thresholding. 

The sparse coefficients is obtained by hard thresholding and the 

threshold is 2   instead. The solution can be expressed as 

following 
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The l0 norm penalty improves image quality (Fig. 3). The 

reconstruction error has been reduced by 22%. Although it is 

hard to prove the convergence theoretically, the curves in Fig. 

4 empirically show that RLNE and the objective function in (A2) 

decreases and gradually stabilizes as the iteration times increase, 

although there is a small oscillation at the beginning. 

The code of the FDLCP with both l1 and l0 norm 

minimization will be released at the authors’ website [9]. 

 

 

Appendix 

 
Fig. 1. Illustration of reordering pixels. (a) All candidate directions in a 

patch; (b) Projecting a pixel to the axis that is orthogonal to a given 

direction line 𝐿𝜃𝑑 associated with an angle 𝜃𝑑 ; (c) indexes of reordering 

pixels into 1D vector. 

 
Fig. 2. Reconstructed images using different sparsifying transforms. (a-c) 

are reconstructed images using Curvelets, Contourlets, and the proposed 
FDLCP. The reconstruction errors, RLNE, of (a-c) are 0.1634, 0.1589 and 

0.0935, respectively. The preserved structure similarity, SSIM, of (a-c) are 

0.8407, 0.8572 and 0.9626, respectively. FDLCP achieves best results. 



APPENDIX D 

EFFECT OF THE NUMBER OF DICTIONARY ATOMS IN DLMRI 

In this appendix, as the reviewer requested, we add a 

comparison when the total number of dictionary atoms in 

DLMRI [10] is set the same as that in the proposed FDLCP, and 

analyze the effect of the number of dictionary atoms in DLMRI.  

For the brain image shown in Fig. 3(a), there are actually 58 

different geometrical directions estimated from all the brain 

image patches, other 13 directions are not found although 71 

geometrical directions are typically predefined for a 8×8 patch 

in FDLCP. Therefore, the total number of atoms in FDLCP and 

DLMRI is 58×64=3712. The reconstructed images shown in 

Fig. 5 indicate that FDLCP preserves image edges better than 

DLMRI and achieve both lower RLNE and higher SSIM. 

Besides, FDLCP runs much faster (approximately 60s) than 

DLMRI. 

Fig. 5(e-f) show that increasing the number of dictionary 

atoms in DLMRI can improve the reconstruction but also 

introduce more computations. When the number of dictionary 

atoms increases from 1024 to 4096, the improvements on 

RLNE and SSIM are marginal but the computation time is 

about 3.5 times. Taking the computation time into account, the 

number of dictionary atoms is set to 64. The original authors of 

 

 

DLMRI typically set the number of atoms being equal to the 

number of pixels in a patch [10], which leads to promising 

results both in their and our experiments. 
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Fig. 3. A comparison of reconstruction images using l0 and l1 norm penalty 
in FDLCP. (a) A full sampled brain image; (b-c) Reconstructed images 

using l0 and l1 norm penalties, respectively; (d) Cartesian undersampling 

pattern with 32% data; (e-f) the reconstruction error magnitudes 
corresponding to (b-c), respectively; RLNE of (b-c) are 0.0741 and 

0.0935, SSIM of (b-c) are 0.9707, 0.9626. Note: The parameters of 

FDLCP are the patch size 8×8, the pre-defined 71 different geometric 
directions for patch classification, the regularization parameter λ=103, and 

the times of updating reference image T=1. 

 
Fig. 4. Empirical convergence of the l0 norm minimization problem. (a) 
The RLNE between the reconstructed image and the ground truth image 

versus the iteration time; (b) The values of the objective function in (A2) 

versus the iteration time. 

 
Fig. 5. The effect of the number of dictionary atoms in DLMRI. (a-b) are 
the reconstructed images using DLMRI and FDLCP when the total number 

of atoms is set as 3712; (c-d) are reconstruction error magnitudes 
corresponding to (a-b), respectively; RLNE of (a-b) are 0.1202 and 0.0935, 

SSIM of (a-b) are 0.9013, 0.9626; (e) RLNE and SSIM versus the number 

of dictionary atoms with comparison to FDLCP; (f) Computation time 

versus the number of dictionary atoms. 


