
 
 

 1 / 24 
 

Karhunen-Loève Transform for Compressive Sampling 

Hyperspectral Images 

Lei Liua,b, Jingwen Yanc, Xianwei Zhengb,Hong Pengc, Di Guod, Xiaobo Que* 

aShantou University, Medical College, Shantou 515063, China 

bShantou University, Department of Mathematics, Shantou 515063, China 

cShantou University, Guangdong Provincial Key Laboratory of Digital Signal and Image Processing 

Techniques, Department of Electrical Engineering, Shantou 515063, China 

dXiamen University of Technology, School of Computer and Information Engineering, Fujian Provincial 

University Key Laboratory of Internet of Things Application Technology, Xiamen 361024, China 

eXiamen University, Department of Electronic Science, Xiamen 361005, China 

*Corresponding author: Xiaobo Qu, E-Mail: quxiaobo@xmu.edu.cn.  

Citation: Lei Liu, Jingwen Yan, Xianwei Zheng, Hong Peng, Di Guo, Xiaobo Qu*. Karhunen-Loève transform for 

compressive sampling hyperspectral images, Optical Engineering, 54(1): 014106, doi:10.1117/1.OE.54.1.014106, 

2015. 

You can view it online at http://dx.doi.org/10.1117/1.OE.54.1.014106 

Abstract: Compressed sensing is a new jointly sampling and compression technology for remote 

sensing. In hyperspectral imaging, typical compressed sensing method encodes the 2D spatial 

information of each spectral band or encodes the 3rd spectral information simultaneously. However, 

encode the spatial information is much easier than spectral information. Therefore, it is crucial to 

make use of spectral information to improve the compression rate on 2D compressed sensing data. 

In this paper, we propose to encode the 3rd spectral information with adaptive Karhunen-Loève 

transform. With a mathematical proof, we show that inter-spectral correlations are preserved 

among 2D randomly encoded spatial information. This property gives that one can compress 2D 

compressed sensing data effectively with Karhunen-Loève transform. Experiments demonstrate 

that the proposed method can better reconstruct both spectral curves and spatial images than 

traditional compression methods at the bit rates 0~1.  
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1 Introduction 

Hyperspectral images (HSI) have high-resolution in both spectral and spatial. These 

data are acquired on satellites or aerospace sensors, and are used for many applications, 

such as geological surveys, military and environmental monitoring, etc. However, 

sensors and equipment hardware resources are extremely limited on satellites and 

aerospace. The huge amounts of data restrict the transmission and storage of 

hyperspectral images 1. Data compression, which improves the transmission efficiency, 

is one of the most important methods for solving such conflicts.  

Hyperspectral images compression can be roughly classified into two major 

categories: lossless and lossy compressions. The lossless compression techniques for 

hyperspectral data are typical prediction based on approaches 2-4, but compression ratio 

is generally only from 2 to 5 5. Lossy compression allows for much higher compression 

ratios than lossless one, where the lossy one leads to adequate reconstruction fidelity for 

many applications. The discrete cosine transform and the discrete wavelet transform 

(DWT) are used widely in compression method to make the energy of spatial dimension 

compact. They have been extended to 3D-discrete cosine transform 6, 7 and 3D-DWT 8, 9 

for 3D HSI data compression. Karhunen–Loève (KL) transform is a classic method to 

remove the spectral redundancy in 3D HSI data and has been applied to compress data 

into few principal components. In the sense of minimum mean square error, KL 

transform is optimal and the most effective technique for data decorrelation 10, 11. KL 

transform has been successfully employed in conjunction with wavelet transform to 

compress hyperspectral images, such as KL with JPEG2000 12-14. Considering the tree 

structure of wavelet coefficients, the 3D set partitioning in hierarchical trees (3D-SPIHT) 
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with wavelet in the spatial domain and KL in the spectral domain were employed to 

improve the compression rate 15, 16.  

The traditional compression methods have achieved promising results but still have 

two major drawbacks: 

1) The Nyquist sampling rule must be satisfied before performing lossy compression. 

This implies that some of these data are discarded in the lossy compression stage. 

Besides that, keeping these data before compression requires storage resources.  

2) Compressing hyperspectral data on board requires hardware and software 

resources which are usually very limited in satellites and aerospace remote 

sensing equipment. 

Can we find an effective way of sampling which simultaneously performs data 

compressing? If it is possible, this method is not only simple in the coding side on 

satellites and aerospace remote sensing equipment, but also reduces the amount of data 

and storage space while improving the transmission efficiency and the utilization 

efficiency of the sensors.  

Compressed sensing (CS) 17, 18 has been proposed to solve these contradictions 

potentially. The hyperspectral images are acquired compressively by sensors based on 

the theory of CS. This new technology has been applied in remote sensing and showed 

promising results19, 20. Duarte et al. 21 and Ma 22 proposed a single-pixel imaging 

method in order to reduce number of sensors, respectively. Soldevila et al. 23 proposed a 

single-pixel optical system in polarimetric spectral imaging. Wagadarikar 24 proposed a 

coded aperture snapshot spectral imaging (CASSI) system in which the measurements 

are coded following the compressive sensing theory. T. Sun25 discussed the advantage 

of compressed sensing hyperspectral imager. Aravind et al. 26 used ten spectral bands to 

compare orthogonal matching pursuit with simultaneous orthogonal matching pursuit in 
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reconstruction. Huo et al. 27 proposed a technique, compressing hyperspectral images 

with the CS sampling, to reduce the data size further. Typical CS hyperspectral imaging 

encodes the 2D spatial information separately or encoding the 3rd spectral information 

simultaneously. However, encode the spatial information is much easier than spectral 

information. Therefore, it is crucial to make use of spectral information to improve the 

compression rate on 2D compressed sensing data. 

In this paper, using encoding the 3rd spectral information with adaptive Karhunen-

Loève (KL) transform, we discuss how to improve the compression rate under the 

framework of CS. By a mathematical proof, we show that inter-spectral correlations are 

preserved among 2D randomly encoded spatial information. This property gives that 

one can compress 2D compressed sensing data effectively with Karhunen-Loève 

transform. Two steps are designed in our compression method. First, a spatial image is 

under-sampled by CS encoding matrix. Second, the adaptive KL transform is used to 

provide spectral structure sparsity priors, and the transform removes the spectral 

correlations of undersampled measurements. Our method is wolves both CS and 

adaptive KL transform, thus we call it CSAKL for short. Applying the experiments, we 

obtain that CSAKL is advantaged of than typical CS and wavelet-based HSI 

compression methods. 

This paper is organized as follows. In Sec. 2, compressive encoding and decoding in 

spatial and spectral are introduced. The experimental results are discussed in Sec. 3. In 

the last section, conclusions are given.  

2 Adaptive KL transform on the compressive samples 

Fig. 1 Flow chart of the proposed method 
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In this section, the new lossy compression recovery method CSAKL is designed. 

CSAKL performs compressive sensing in the spatial dimension and adaptive KL 

transform in spectral dimension. A fast iterative shrinkage-thresholding algorithm 28, 29 

is used to reconstruct HSI data from undersampled samples. Fig. 1 shows a flow chart 

of the proposed method. 

2.1 Compressive encoding on the spatial dimension 

The theory of CS shows that a sparse signal can be recovered from a relatively small 

number of linear measurements 17, 18. For HSI data x, we can perceive the spatial 

domain compressed HSI data by an orthogonalizable Gaussian random matrix Φ 

according to the CS theory. Let HSI x=(x(1), x(2),Λ , x(L)) M N L× ×∈ϒ , where x(i) is the ith 

spectral band image, M×N represent the spatial dimensions and L represents the spectral 

depth of HSI. Let xi be a column vector of the ith band HSI with size MN×1, x=(x1, x2,

Λ , xL) MN L×∈ϒ . In order to retain strong correlation between adjacent spectral bands, 

each spectral band is encoded separately with a same encoding matrix Φ. The data 

acquisition model for CS is given by 

i i i=y Φ x   (1) 

[ ], , ,1 2 L=Y y y y  (2)

where Y is compressive samples, Φi ( )J MN J MN×∈ϒ =  (1≤ i ≤L) is an encoding matrix 

for the band i of HSI, yi
1J ×∈ϒ  (1≤ i ≤L) is the acquired spatial under-sampled data for 

the ith band of HSI. The compressive sampling ratio (CSR) is defined as 

=
J

CSR
MN

 (3) 

which is compression rate of the HSI data at spatial dimension. CS encodes every 

spectral band using Gaussian encoding matrix which leads iy  to be random. Thus, it is 
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difficult to compress single iy  with wavelet or other transform. Fortunately, compress 

all ( )1,2, ,i i L=y Λ  jointly is possible if the redundancy is existed among spectral bands.  

2.2 Adaptive KL Transform Encoding on Spectral Domain 

2.2.1 Spectral correlations of the CS encoding data with 2D or 3D CS encoding 

matrix 

There are two different acquisition schemes in CS HSI. When Φi=Φj (i ≠ j), each 

spectral band is encoded separately with a same encoding matrix, which is called 2D CS 

encoding matrix. When Φi ≠ Φj (i ≠ j), each spectral band is encoded separately with the 

different encoding matrix, which is called 3D CS encoding matrix. 3D CS encoding 

allows to reconstructing data better than 2D CS encoding 30 because of the randomness 

introduced along the spectral dimension. However, as is seen in Fig. 2, 3D CS encoding 

damages the correlation among spectral bands. This reduces the compression ratio for 

jointly compressing spectral bands. But this correlation can be well preserved by 2D CS 

encoding. Although it will be hard to prove the quantative relationship of correlations 

before and after the random encoding, one can evaluate the performance on the tested 

HSI data.  Results in Fig.3 show that correlations after the random encoding is larger 

than that of the original signal. This observation is still held that different spatial 

compressive sampling ratios are used. Furthermore, it is difficult to implement in 

hardware for 3D encoding since different encoding matrices are required for different 

spectral bands. Therefore, 2D CS encoding scheme is adopted in this paper.  

Fig. 2 The correlations of neighbouring spectral bands. (a)-(c) the correlations before the 2D CS encoding 

for Moffett, Cuprite and Lunar lake data, (d)-(f) the correlations after the 2D CS encoding for Moffett, 

Cuprite and Lunar lake data. (g)-(i) the correlations after the 3D CS encoding for Moffett, Cuprite and 

Lunar lake data. Note: The spatial compressive sampling ratios (CSR) is 50%。 
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Fig.3 The correlations of 2D CS encoding data with different CSRs. Note: Test is performed on

64 64 224× × Moffett dataset. 

 

In the following, a mathematical proof is given to show that the 2D CS encoding 

scheme can preserve the inter-spectral correlations. 

Definition 1 If x and y are nonzero and jointly distributed random variables, then the 

correlation coefficient of x and y, denoted by ρ(x, y), is 

( )
( )

(

)
,

)

(

,Cov

Var Var
ρ = x y

x
y

y
x   (4) 

where ( ),Cov x y is the covariance of x and y, ( )Var ⋅ is the variance of a random variable.  

We recall an important result from reference 31 as follows: 

Lemma 1. The correlation coefficient of x and y satisfies−1 ≤ ,࢞)ߩ ࢟) ≤ 1. 

Furthermore, ߩ(࢞, ࢟) = ±1 if and only if P(࢟ = ܽ + ܾ࢞) = 1 for some constants a and 

b.  

Next, we prove an auxiliary result. 

Lemma 2.  Let x, y 1N ×∈  be two strongly correlated vectors. The correlation 

coefficient of them is defined as 

( )
( )( )

( ) ( )
1

2 2

1 1

,

N

i i
i

N N

i i
i i

x x y y

x x y y

ρ =

= =

− −
=

− −



 
x y , 

where x=(x1, x2,…, xN)T, y=(y1, y2,…, yN)T , xi, yi [0,1]∈  and x  is the mean of x, y  is 

the mean of y. Let Φ  be an orthogonal random matrix subjecting to normal distribution 

with mean 0 and variance 1, then ( ), 1ρ ≈Φ Φx y . 

    Proof. For vectors 1, NR ×∈x y , we have  
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( ) 1 1

2 2

1 1

,
,

, 2 , 2

N N

i i
i i

N N

i i
i i

y x x y N x y

x x N x y y N y

ρ = =

= =

− − +
=

  − + − +  
  

 

 

x y
x y

x x y y

 

1 1

2 2

1 1

1
,

1 1
, ,

N N

i i
i i

N N

i i
i i

x y
N

x y
N N

= =

= =

−
=

     − −            

 

 

x y

x x y y

， 

where ,x y  denotes the inner product of vectors 1, NR ×∈x y . Hence, 

( )
( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1

2 2

1 1

1 1

2 2

1 1

1
,

,
1 1

, ,

1
,

1 1
, ,

N N

i i
i i

N N

i i
i i

N N

i i
i i

N N

i i
i i

N

N N

N

N N

ρ = =

= =

= =

= =

−
=

     − −            

′ −
=

     ′ ′− −            

 

 

 

 

Φ Φ Φ Φ
Φ Φ

Φ Φ Φ Φ Φ Φ

ΦΦ Φ Φ

ΦΦ Φ ΦΦ Φ

x y x y
x y

x x x y y y

x y x y

x x x y y y

 

where Φ is an orthogonal random matrix subjecting to normal distribution with mean 

zero and variance 1 and ′Φ Φ =I. The modulus of elements in Φ  are close sufficiently 

to zero when the dimension of Φ  is large enough. Therefore, Φ  is perturbation of a 

zero matrix. Since Φ can be considered as a continuous linear operator and acts on 

( )1l N  stably, ( )
1

N

i
i=
 Φx  and ( )

1

N

i
i=
 Φy  are sufficiently close to zero.  

Note that the Cauchy-Schwart inequality, , , ,≤y y yx x x . Here the equation 

holds if and only if , yx   are linear dependant. If the strong correlations lie in x and y, 

then , , ,≈y y yx x x . Thus 

                                 ( ) ,
, 1

, ,
ρ ≈ ≈Φ Φ

x y
x y

x x y y
.                                                    # 
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Theorem 1. Suppose that M N L× ×∈x ϒ  is a three-dimensional digital signal.  x can be 

converted into two-dimensional digital signal x=(x1, x2,Λ , xL) MN L×∈ϒ , where xi, i=1, 

2,…, N,  are MN-dimensional column vectors. Y=(y1, y2, Λ , yL) is the measure data 

satisfied =Y Φx , where Φ is a random encoding matrix. If strong correlations lie in 

adjacent spectral bands of x, then they also lie in Y. 

Proof: Let the correlation coefficient between the ith and the (i+1)th spectral bands for 

x be denoted by 
i

Rx . If 1
i

R =x , by Lemma 1, there are some constants ܽ௜ and ܾ௜, such 

that, P(࢞௜ = ܽ௜࢞࢏ା૚ + ܾ௜) = 1 for any i. Namely P(Φ࢞௜ = Φ (ܽ௜࢞࢏ା૚ + ܾ௜)) = 1. By 

the assumptions,  P(Φ࢞௜ = Φ (ܽ௜࢞࢏ା૚ + ܾ௜)) = P(࢟࢏ = ܽ௜࢟࢏ା૚ + ઴ܾ௜)   

that is, P(࢟࢏ = ܽ௜࢟࢏ା૚ + ઴ܾ௜) = 1. By Lemma 1 again, ࢏࢟)ߩ, (ା૚࢏࢟ = 1, for any i.  

If strong correlations lie in adjacent spectral bands of x, then by Lemma 2, we have

( ) ( ) 1
1 1

1 1

,
, , 1

, ,

i i
i i i i

i i i i

ρ ρ +
+ +

+ +

= ≈ ≈Φ Φ
x x

y y x x
x x x x

 .Thus, the neighbouring spectral 

bands of Y are strongly correlated.                                                                                # 

2.2.2 Adaptive KL compressive encoding with 2D CS encoding 

According to the above analysis, strong correlations will be retained if each spectral 

band is encoded with the same random matrix. Now, we discuss how to compress these 

compressive samples.  

The KL transform is the optimal technique for data decorrelation in the sense of 

minimum mean square error 14, 32. KL transform makes the energy compact into few 

principal components along the spectral dimension. It is the eigenvalue decomposition 
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of the covariance matrices according to the following formula. Covariance matrix C of 

HSI data is given by 

1

1
( )( )

L
T

i i
iL =

= − −C x x x x  (5) 

T
g =C ACA  (6) 

where xi denotes the ith spatial image of data x and 
1

L
i

i L=

= x
x  is the means of data x in 

spectrum. Eigen decomposition is adopted for covariance matrix C. Cg is a diagonal 

matrix. Let Cg(i,i)=  (1 )i i Lλ ≤ ≤ be an eigenvalue. A and AT are normalized orthogonal 

eigenvectors and its transpose. Different spatial block have different normalized 

orthogonal eigenvectors A. Following the formula, we can select eigenvalues and their 

corresponding eigenvectors such that the saved energy approaches above 99%. 

2

1

2

1

99%              1 n

n

i
i
L

i
i

L
λ

λ
=

=

≥ ≤ ≤



 (7) 

According to the selected eigenvalues and their corresponding eigenvectors, the KL 

transform becomes 

[ ]1 2, , , L= − − −x x x x x x x% Λ , (8)  

T=P A x% , (9) 

= A Px% , (10)

[ ]1 2, , , L= + + +x x x x x x x% % %Λ , (11)

where matrix P denotes the KL transform matrix of zero mean HSI data. In size 

Q×m×n HSI data compression, only spectral means vector (Q), principal components 

( k m n× × ), and k eigenvectors ( Q k× ) need to be saved after KL transform. The 

adaptive KL transform compression ratio (KLR) can be calculated by 
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Q k m n Q k
KLR

Q m n

+ × × + ×=
× ×

  (12) 

where m n×  represents the spatial block size,  k  is the number of retained eigenvalues , 

and Q  is the number of the spectral bands. The compression bit rate (BR) of the 

proposed method can be calculated by: 

the number of pixels of the compressed image
16 16

the number of pixels of the original image
BR CSR KLR= × = × ×  (13) 

Here CSR is the compression rate in spatial domain defined in Eq. (3) and KLR is the 

compression rate in spectral domain defined in Eq. (12). 

2.3 Decoding 

There are two steps in decoding on ground stations and the flow chart is shown in Fig. 4. 

First, an inverse KL transform is performed with Eq. (6), (7)-(11) to recover CS 

undersampled HSI data. Second, a numerical algorithm to solve l1 norm minimization 

problem is applied to reconstruct HSI data from undersampled samples using 3D 

wavelet transform, a typical sparse transform for HSI 33, 34. Let Ψ  represent inverse 3D 

wavelet transform and let TΨ denote its forward transform. CS recovers x by solving  

{ }2

1 2
ˆ arg min λ= + −

α
α α y ΦΨα  (14) 

where T=α Ψ x , ⋅ p (p=1,2) stands for lp -norm, and λ is the regularization parameter 

which determines the tradeoff between the sparsity and the data fidelity. λ=10-2 is 

empirically chosen to give optimal results. In this paper, a fast iterative shrinkage-

thresholding algorithm 28, 29 is used to solve Eq. (14) because of its simplicity and 

classic method. The final output is reconstructed images ˆˆ =x Ψα . 

Fig. 4 Flow chart of decoding. 
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3 Experimental results  

The 16-bit HSI data are obtained from U.S. AVRIS website, including Moffett Field, 

Cuprite and Lunar Lake. Those data contain 224 spectral bands with spatial size 64×64, 

which are named as Moffett, Cuprite and Lunar lake, respectively. Every pixel is 

encoded with 16-bit, and all data are normalized between [0, 1]. Experiments run on a 

dual core 2.5 GHz CPU laptop with 4 GB RAM.  

To evaluate the performance, the every band peak signal-to-noise ratio (PSNR), 

average peak signal-to-noise ratio (APSNR) and entire data peak signal-to-noise ratio 

(EPSNR) 35, 36 are adopted as criteria to measure the reconstruction HSI data. Their 

definitions are 

( )2

1 1

1
ˆ( ) ( , , ) ( , , )

M N

j i

MSE s i j s i j s
M N = =

= −
⋅  x x  (15) 

( )2

10

ˆmax(max( ( , , )))
( ) 10 log

( )

i j s
PSNR s

MSE s

 
=  

 
 

x
 (16)

1

1
( )

L

s

APSNR PSNR s
L =

=  , (17)

( )
( )

2

10
2

1 1 1

ˆmax( (:))
10 log

1
ˆ( , , ) ( , , )

L M N

s j i

EPSNR
i j s i j s

L M N = = =

 
 
 =
 − ⋅ ⋅ 


x

x x
 (18)

where x denotes the original HSI cube data, and x̂  denotes the recovered HSI cube data, 

s denotes the number of spectral bands. APSNR can evaluate the average reconstruction 

performance of each band while EPSNR evaluates the whole reconstruction 

performance that is regardless of the spectral bands.  
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3.1 Eigenvalues of 2D CS samples 

For a certain spatial position in a hyperspectral images, there are a number of different 

bands. Therefore, the similarity between the adjacent spectrum segments is more 

prominent, which leads to the high correlation between adjacent spectral images. This 

correlation is also known as the spectral structure. After 2D CS encoding, the spectral 

structure has not changed, as shown in Fig. 2(d)-(f). Except a few spectral bands, the 

spectral correlation coefficients for other bands are above 0.95.  

The attenuation of eigenvalues with adaptive KL transform on three HSI data is 

tested in Fig. 5 (a). The eigenvalues of the covariance have obvious attenuation with

1 2 Lλ λ λ≥ ≥? Λ  for three datasets. By preserving small number of eigenvalues, 

reconstruction errors for all data decay rapidly as is seen in Fig. 5 (b), where the 

normalized energy error 
2

2
2

2

ˆ −x x

x
 is used as the reconstruction error. A faster decay of 

eigenvalues is observed on Lunar lake which contains strong edges and textures. By our 

method, for HSI data with fruitful edges and textures, a better reconstruction can be 

achieved. 

Fig. 5 The attenuation curves of three types HSI CS encoding data.  (a) Eigenvalues, (b) 

Reconstruction error. Note: The spatial compressive sampling ratios (CSR) is 50%。 

The eigenvalues of CS encoding data covariance with different sampling rate shows 

obvious attenuation in Fig. 6. The energy of CS samples approaches above 99% when 2 

eigenvalues are retained because of the correlations between spectral bands. 

Fig. 6 The eigenvalues versus different sampling rate CS encoding data. Note: Test is performed on 

Moffett dataset. 
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3.2 The CSAKL method under different spatial compression rates 

The total compression rate can be optimized if the compression rates in the spatial and 

spectral dimension are adjusted properly according to Eq. (13). The spectral 

compression is obtained by preserving a small number of eigenvalues and their 

corresponding eigenvectors for three types HSI data. In the future, higher compression 

rate may be achieved by cutting down random encoding rate in the spatial domain.  

(A) Entire data cube PSNR 

For the ith spectral band image, the CS undersampling equation can be expressed as

i i i=y Φ x , where
264 1

i
×∈x ϒ , iΦ

2 264 64CSR⋅ ×∈ϒ  and CSR is spatial compression rate. Spatial 

sampling rate CSR is 0.3, abbreviated as 30%. The same number of eigenvalues and 

their corresponding eigenvectors is selected, the reconstruction PSNR is compared 

under different spatial compression rate. As is shown in Fig. 7, by preserving two 

eigenvalues and their corresponding eigenvectors, spatial sampling compression rate 

have more influence in reconstructing EPSNR when CSR is smaller than 50%, but a 

little change in EPSNR when CSR is large than 60%. Thus, for CSR is smaller than 50%, 

more eigenvalues and their corresponding eigenvectors should be retained to enhance 

EPSNR.  

Fig. 7 EPSNR performance under different spatial compression rates. 

(B) Describe the different PSNR values for different band 

The HSI data may contain different levels of noise in different bands, thus the EPSNR 

is not enough to discuss the compression performance regarding with these bands. In 

this case, PSNR for every band will be more meaningful to understand the relationship 

between CSR and quality of reconstructed image. PSNRs of every band with different 

spatial sampling compression rates are shown in Fig. 8. In Fig. 8, 40%, 50%, 60%, 70%, 
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80% indicate the CSR is 0.4, 0.5, 0.6, 0.7 and 0.8 respectively. For HSI data, water-

absorption and noisy make information of about 35 noise bands (from 100 to 115 bands 

and 150 to 170 bands) junk. The reconstruction performance of the noise bands is much 

lower than other bands with very poor PSNR values. With the increase of CSR, we have 

observed the same increase in the PSNR curve. However, there are greater increases in 

PSNR curves when CSR is less than 50%. If CSR is over than 60%, the increase is slow. 

Fig. 8 PSNRs performance under different spatial sampling compression rates. (a) Moffett, (b) 

Cuprite, (c) Lunar lake. 

(C) Describe the average PSNR values for different band 

The APSNR performance under different bit rates and spatial sampling compression 

rates is shown in Fig. 9. When CSR are 60%, 70% and 80%, the similar APSNR is 

received. Overall consideration, CSR=60% is selected as the best combination. This 

setting will be used to compare our method with other methods. 

Fig. 9 APSNR of reconstruction image with different bit rate and spatial sampling compression 

rate. (a) Moffett, (b) Cuprite, (c) Lunar lake. 

3.3 Comparison with typical compression methods 

In this subsection, the proposed method CSAKL based on CS theory and adaptive KL 

transform, is compared with CSDWT, which adopts CS in spatial domain and DWT in 

spectral domain, and with the typical HSI compression method 3D SPIHT 37, 38. The 

compression bit rate of CSAKL is proportional to the product of CSR and KLR, denoted 

by BR=16×CSR×KLR.  

The average PSNRs under different bit rates are showed in Fig. 10. On the three 

datasets, the proposed CSAKL achieves better PSNRs performance than other two 

methods. The advantage is more obvious when the bit rate is lower than 0.6.  
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Fig. 10 APSNR with different compression bit rate. (a) Moffett, (b) Cuprite, (c) Lunar lake. 

Structures of images (see in Fig. 11) are preserved better using CSAKL than using 

3D SPIHT and CSDWT. For instance, SPIHT seriously blurs the images in Figs. 11 (d) 

- (f) and CSDWT presents noise-like artifacts in Figs. 11 (g) - (i). These problems are 

not observed in the proposed method.  

Reconstructed spectral lines are compared in Fig. 12. The points close to image edges 

are selected. The spectral curves are preserved much better using CSAKL than other 

methods. Too smoothen spectral lines are reconstructed with CSDWT. One reason to 

explain this is that only partial low-frequency coefficients are retained in DWT at low 

bit rate (0.3 bpp in this case). 

Fig. 11 The reconstructed 135th band of test HSI data using CSDWT, 3D-SPIHT, and CSAKL when 

BR=0.3bpp. (a)-(c) are the 135th original Moffett, Cuprite and Lunar lake datasets, (d)-(f) are 

reconstruction using 3D-SPIHT, the PSNRs are 21.35dB, 28.05dB, 29.87dB, (g)-(i) are reconstruction 

using CSDWT, the PSNRs are 23.15dB, 34.35dB, 33.44dB, (j)-(l) are reconstruction using CSAKL, the 

PSNRs are 34.65dB, 38.80dB, 37.28dB respectively.   

Fig. 12 Recovered spectral line using 3D SPIHT, CSDWT and CSAKL when BR=0.3 bpp. (a) Moffett, 

spatial position  (37, 55),  (b) Cuprite,  spatial position  (25, 38),  (c) Lunar lake, spatial position  (55, 51). 

4 Conclusions  

Compressive sensing is a new sampling and compression technology for hyperspectral 

imaging. In this paper, we proved that inter-spectral correlations are preserved among 

2D compressive sensing hyperspectral imaging data. Correspondingly, adaptive 

Karhunen-Loève transform is proposed to remove the spectral redundancy of spatially 

encoded data such that improve the compression performance is improved. Experiments 

demonstrate that the proposed method has better reconstruction performances on both 



 
 

 17 / 24 
 

spectral cures and spatial images than traditional compression methods. In the future, 

proving the quantative relationship of correlations before and after the random encoding 

will improve the theoretical foundation of this paper. We also plan to design effective 

CS encoding matrix in the spatial dimension to provide sparse representation of HSI 

images, including optimizing sparse representation of HSI, e.g. geometric direction 

sparse representation 39, 40 and self-similarity 41-43. Besides, how to adjust the 

compression rates in the spatial and spectral dimension to achieve higher overall 

compression rates is still open. 
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Caption List 

 

Fig. 1 Flowchart of the proposed method. 

Fig. 2 The correlations of neighbouring spectral bands. (a)-(c) the correlations before 

the 2D CS encoding for Moffett, Cuprite and Lunar lake data, (d)-(f) the correlations 

after the 2D CS encoding for Moffett, Cuprite and Lunar lake data. (g)-(i) the 

correlations after the 3D CS encoding for Moffett, Cuprite and Lunar lake data. Note: 

The spatial compressive sampling ratios (CSR) is 50%。 

Fig.3 The correlations of 2D CS encoding data with different CSRs. Note: Test is 

performed on 64 64 224× × Moffett dataset. 

Fig. 4  Flowchart of decoding process.  

Fig. 5 The attenuation curves of three types HSI CS encoding data.  (a) eigenvalues, (b) 

reconstruction error. Note: The spatial compressive sampling ratios (CSR) is 50%。 

Fig. 6 The eigenvalues versus different sampling rate CS encoding data. Note: Test is 

performed on Moffett dataset. 

Fig. 7 EPSNR performance under different spatial compression rates. 

Fig. 8 PSNRs performance under different spatial sampling compression rates. (a) 

Moffett, (b) Cuprite, (c) Lunar lake. 

Fig. 9 APSNR of reconstruction image with different bit rate and spatial sampling 

compression rate. (a) Moffett, (b) Cuprite, (c) Lunar lake. 

Fig. 10 APSNR with different compression bit rate. (a) Moffett, (b) Cuprite, (c) Lunar 

lake. 

Fig. 11 The reconstructed 135th band of test HSI data using CSDWT, 3D-SPIHT, and 

CSAKL when BR=0.3bpp. (a) - (c) are the 135th original Moffett, Cuprite and Lunar 

lake datasets, (d) - (f) are reconstruction using 3D-SPIHT, the PSNRs are 21.35dB, 
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28.05dB, 29.87dB, (g) - (i) are reconstruction using CSDWT, the PSNRs are 23.15dB, 

34.35dB, 33.44dB, (j) - (l) are reconstruction using CSAKL, the PSNRs are 34.65dB, 

38.80dB, 37.28dB respectively.  

Fig. 12 Recovered spectral line using 3D SPIHT, CSDWT and CSAKL when BR=0.3 

bpp. (a) Moffett, spatial position  (37, 55),  (b) Cuprite, spatial position  (25, 38),  (c) 

Lunar lake, spatial position  (55, 51). 
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