

Sparsity-based Online Missing Sensor Data Recovery

Di Guo

Xiamen University, China

Xiaobo Qu, Lianfen Huang, Yan Yao, Zicheng Liu, Ming-Ting Sun

May 22, 2012

Contents

Missing data recovery

Sparsity-based recovery model

Dictionary design

Two extensions

Simulation results

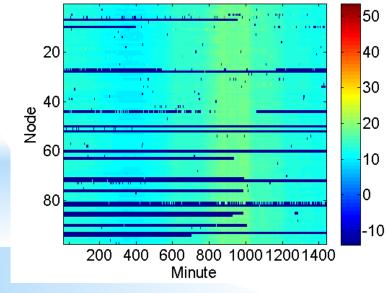
Conclusion & Future work

Wireless Sensor Networks

Applications: environment sensing, building, agricultural surveillance, medical care, military

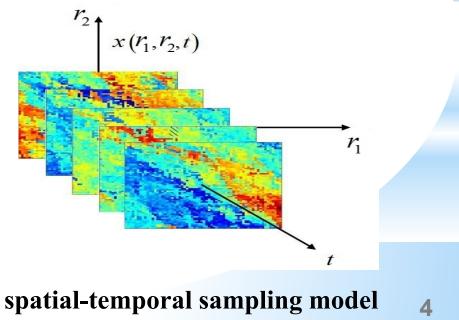
Data is missing

- > Node power outage
- Hardware dysfunction
- Channel fading
- Bad environment



dark blue represent missing data

Station ID	n/a	Relative Humidity (%) n/a		
Arrival Date & Time		Soil Moisture (%)		
Sequence Number	n/a	Watermark (kPa)	n/a	
Ambient Temperature (°C)		Rain Meter (mm)		
Surface Temperature (°C)	n/a	Wind Speed (m/s)		



Missing data recovery

Retransmission: not suitable to delay sensitive applications

Interpolation methods: typical ones

(1) K-Nearest-Neighbor (KNN)

(2) Kriging

Intercommunity: linear combination of available data

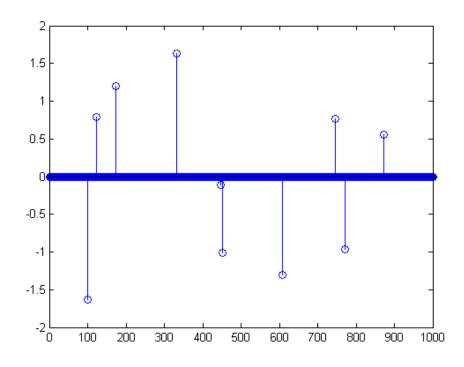
Different weight: KNN: distance between neighbors;

Kriging: data statistics (variogram)

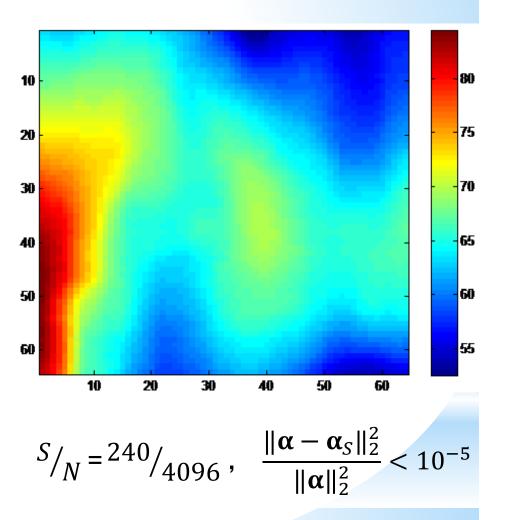
Proposed method

Sparse linear combination of atoms $\mathbf{x} = \mathbf{\Psi} \mathbf{\alpha} = \sum_{j=1}^{N} \psi_j \alpha_j$

> Weight relies on the available data



 $\|\boldsymbol{\alpha}\|_0 \ll N, \ \mathbf{x} \in \mathbb{R}^N$



Assumption: Gaussian noise

$$\hat{\boldsymbol{\alpha}}_{n} = \arg\min_{\boldsymbol{\alpha}_{n}} \frac{1}{2} \left\| \mathbf{f}_{n}^{\Lambda_{n}} - \boldsymbol{\Phi}_{n}^{\Lambda_{n}} \boldsymbol{\alpha}_{n} \right\|_{2}^{2} + \lambda \left\| \boldsymbol{\alpha}_{n} \right\|_{1}^{2}$$

Maximum a posteriori probability

Output: $\mathbf{A}_n = \mathbf{\Phi}_n \hat{\mathbf{\alpha}}_n$

n

Key: How to reduce recovery error? (1) Dictionary, (2) Available data consistency

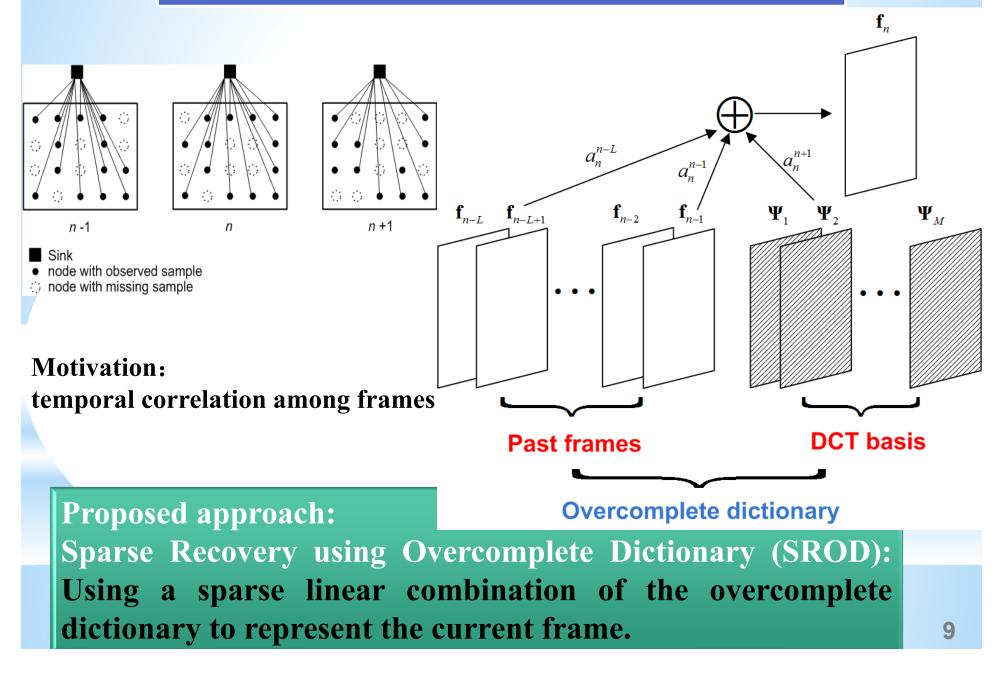
Dictionary

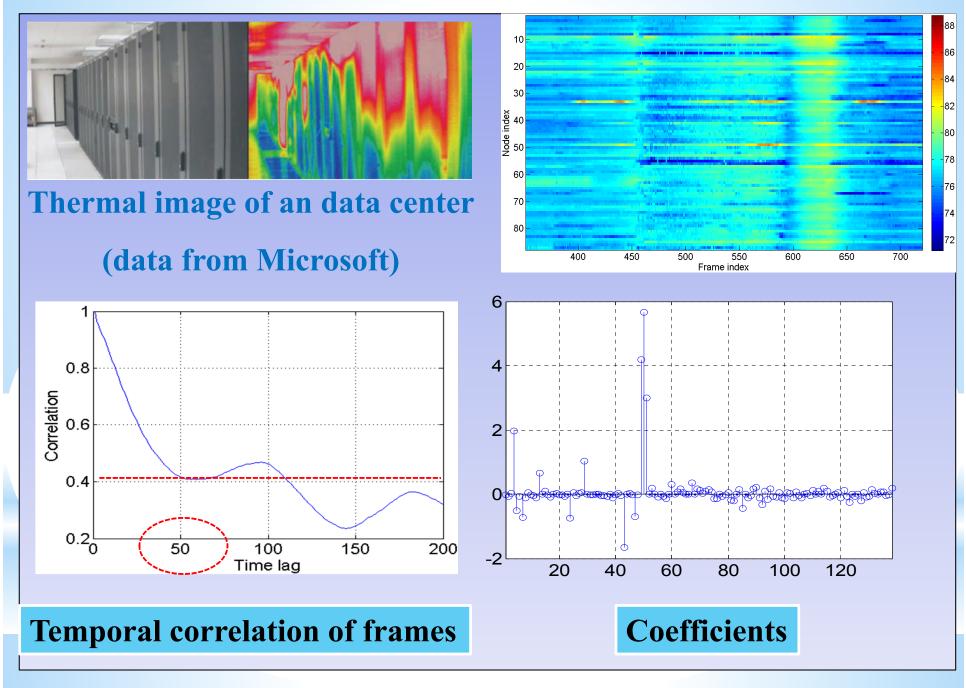
Features of WSN data

smooth, few boundaries
weak spatial correlation
strong temporal correlation
Example: surface sunshine duration

- > Spatial domain: DCT basis
- Temporal spatial domain: a few past frames + DCT basis (overcomplete dictionary)

Sparsity-based online data recovery





Simulation

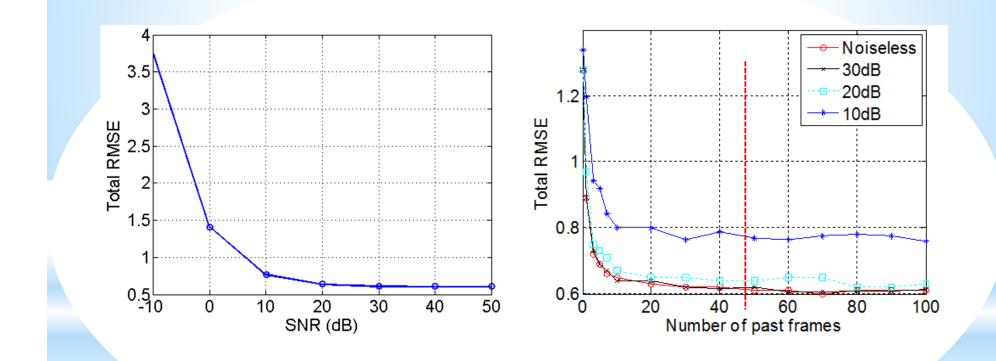
Methods	KNN				SROD			
	10%		20%		10%		20%	
Mean	5	10	5	10	5	10	5	10
MAE_frame	1.31	1.40	1.54	1.88	0.88 (32.8%)	1.11 (20.7%)	1.19 (22.7%)	1.49 (20.7%)
MAE_node	1.48	1.48	1.75	1.80	1.06 (28.4%)	1.21 (18.2%)	1.39 (20.6%)	1.50 (16.7%)
RMSE_frame	0.66	0.69	0.66	0.78	0.43 (34.8%)	0.53 (19.7%)	0.47 (28.8%)	0.58 (25.6%)
RMSE_node	0.68	0.67	0.69	0.77	0.43 (36.8%)	0.52 (23.5%)	0.47 (31.9%)	0.56 (27.3%)
Total RMSE	0.76	0.75	0.73	0.84	0.47 (38.2%)	0.57 (25.0%)	0.51 (30.1%)	0.63 (25.0%)

3D-KNN: anisotropic temporal spatial correlation

Data missing rate: 10%, 20%

Burst missing length: 5, 10

Robustness to Noise

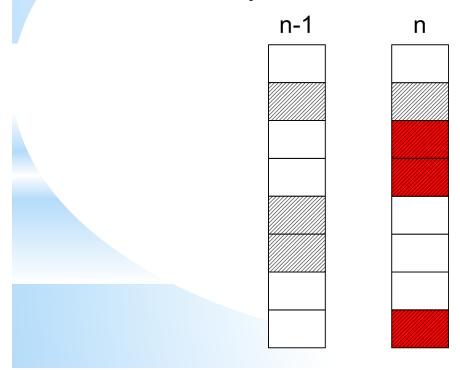


Error propagation

Problem: the recovery error of last frame may propagate

Possible solution:

Leverage the available data of current frame to correct the recovery error in the last frame in some degree.



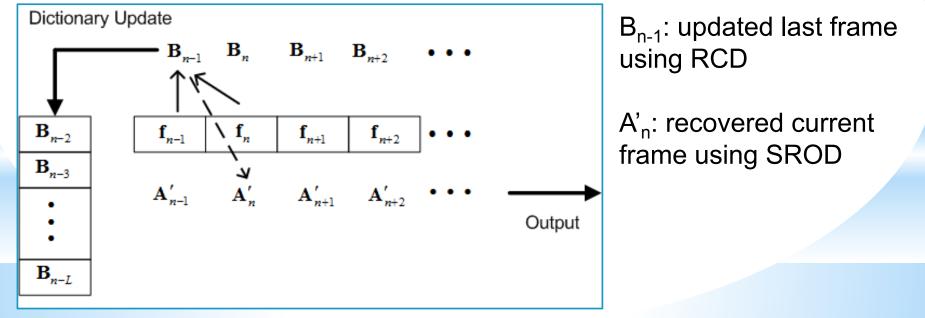
Last frame missing, but current frame available

Recovery with Corrected Dictionary (RCD)

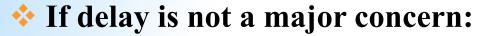
Neighboring data consistency

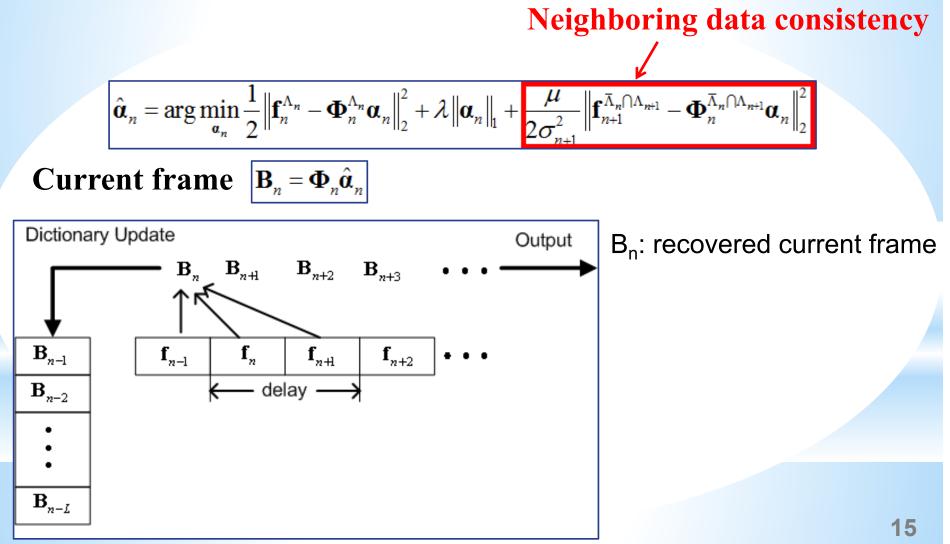
$$\hat{\boldsymbol{\alpha}}_{n-1} = \arg\min_{\boldsymbol{\alpha}_{n-1}} \frac{1}{2} \left\| \mathbf{f}_{n-1}^{\Lambda_{n-1}} - \boldsymbol{\Phi}_{n-1}^{\Lambda_{n-1}} \boldsymbol{\alpha}_{n-1} \right\|_{2}^{2} + \lambda \left\| \boldsymbol{\alpha}_{n-1} \right\|_{1}^{2} + \frac{\mu^{2}}{2\sigma_{n}^{2}} \left\| \mathbf{f}_{n}^{\Lambda_{n-1}} \cap \Lambda_{n} - \boldsymbol{\Phi}_{n-1}^{\Lambda_{n-1}} \cap \Lambda_{n} \boldsymbol{\alpha}_{n-1} \right\|_{2}^{2}$$

Update one atom of the dictionary $\mathbf{B}_{n-1} = \mathbf{\Phi}_{n-1} \hat{\boldsymbol{\alpha}}_{n-1}$



Recovery with future frame compensation (RFFC)





Simulation

Three proposed sparsity-based recovery method compare with corresponding 3-D KNN

Missing rate: 20%, burst missing length: 1

Methods≓		KNN		Proposed		
Mean	KNN	KNN-CD ₄	KNN-FFC-1.	SROD.	RCD.	RFFC-1.
MAE_frame∘	1.550	1.54 (0.6%).	1.46 (5.8%)	0.97 (37.4%)@	0.95 (38.7%)*	0.79 (49.0%)
MAE_no de₊	1.80	1.79 (0.6%)+2	1.73 (3.9%)	1.25 (30.6%).	1.24 (31.1%)*	1.08 (40.0%)*
RMSE_frame₽	0.66₽	0.66 (-)	0.62 (6.1%)	0.38 (42.4%)	0.37 (43.9%).	0.30 (54.5%).
RMSE_no de₊	0.69₽	0.69 <mark>(-)</mark> +	0.65 (5.8%)	0.39 (43.5%)#	0.38 (44.9%)*	0.32 (53.6%)#
Total RMSE.	0.72	0.72 (-)	0.69 (4.2%) ∂	0.43 (40.3%)@	0.42 (41.7%) ₽	0.36 (50.0%) ∂

Error reduce by 40%

*** RFFC** reduce error by 10% over **SROD**

Conclusion

- Propose sparsity-based online data recovery method
- Construct an overcomplete dictionary: past frames + DCT basis
- Recovery performance significantly outperforms KNN
- Robust to certain noise
- RCD may reduce error propagation
- RFFC can further improve recovery performance

Future work

Test missing pattern from the perspective of wireless communication

Extract data feature using data mining

Design dictionary and optimization algorithms

Acknowledgement

Data from Dr. Jie Liu in Microsoft

Funds from

- Tsinghua-Qualcomm Joint Research Program
- National Natural Science Foundation of China (No. 61001142)
- China Scholarship Council

Thank you

Thank you

