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Abstract: Compressed sensing has been shown promising to speed up magnetic resonance imaging, and its combination with 

partially parallel imaging can further accelerate the data acquisition. For compressed sensing, a sparser representation of an 

image usually leads to lower reconstruction errors. Recently, a patch-based directional wavelets (PBDW), providing an 

adaptive sparse representation of image patches with geometric information, has been proposed in compressed sensing MRI 

to improve the edge reconstruction. However, it is still unknown how to incorporate PBDW into partially parallel imaging. In 

this work, we propose to use patch-based directional redundant wavelets (PBDRW) as an adaptive sparsifying transform in 

compressed sensing sensitivity encoding, and wed the new method with radial sampling to achieve higher acceleration factors. 

Results from simulation and in vivo data indicate that PBDRW in sensitivity encoding achieves lower reconstruction errors 

and preserves more image details than traditional total variation and wavelets. 
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1. Introduction 

Magnetic resonance imaging (MRI), as a noninvasive detection technique, has been widely used to 

investigate biological structures. However, MRI is limited due to time-consuming encoding in phase encoding 

directions and/or in temporal dimensions, etc. In order to accelerate the imaging, partially parallel imaging 

(PPI) [1-5] is adopted in commercial scanners with phase array receiver coils. In PPI, an array of receiver coils 

collects more information than that with a single coil. PPI can be roughly classified in k-space and image 

domains according to which domain the reconstruction method operates. In the k-space domain, typical 

methods are simultaneous acquisition of spatial harmonics [6, 7], generalized auto-calibrating partially parallel 
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acquisitions [8-10], and iterative self-consistent parallel imaging reconstruction [11, 12]. In the image domain, 

sensitivity encoding (SENSE) [1, 13-15] is a typical method. The SENSE MRI is based on receiver sensitivity, 

which has an encoding effect complementary to gradient encoding [1]. Thus, imaging time can be saved when 

the undersampling data are received by multiple receiver coils in parallel scanning.  

Compressed sensing was introduced to MRI to accelerate the imaging from the aspect of sparse signal 

processing [16-18]. This new technology is called CS-MRI for short. The CS-MRI tries to reconstruct the 

faithful magnetic resonance (MR) images from undersampled data, and consequently save the imaging time. 

A successful CS-MRI is based on three requirements: an sparse representation, artifact incoherence, and an 

effective numerical algorithm [16]. For the sparse representation, traditional representations include wavelets 

transform and finite difference [16]. Recently, Qu et al. proposed patch-based directional wavelets (PBDW) 

[19] in CS-MRI to provide an adaptive sparse representation, but it has not been combined with parallel 

imaging. PBDW outperforms the traditional 2D wavelets and finite difference in edge preserving. For artifact 

incoherence, it means that artifact should be incoherent with sparse representation. For MRI, the distribution 

of artifacts is seriously affected by the k-space sampling trajectory. For example, compared with Cartesian 

undersampling, a non-Cartesian undersampling trajectory can enhance the artifact incoherence [20, 21]. 

Furthermore, non-Cartesian sampling trajectories usually lead to rapid k-space coverage thus speed up 

encoding [21] and the radial sampling is a typical non-Cartesian sampling trajectory.  

  In this paper, we proposed to use patch-based directional redundant wavelets (PBDRW) as an adaptive 

sparsifying method in compressed sensing sensitivity encoding (CS-SENSE), and combine the new method 

with radial sampling to achieve higher acceleration factors. An alternating direction method with continuation 

algorithm is derived to solve this MRI reconstruction model. Results from simulation and in vivo data indicate 

that, using the radial undersampled data, the PBDRW based CS-SENSE provides lower reconstruction errors 

and preserves more details than the conventional sparsifying transforms based CS-SENSE. 

2. Materials and methods 

2.1 SENSE 

  On an MRI scanner with Q  channel receiver coils, the information acquired in the field of view from thq  

channel will be weighted by the coil sensitivity qC (q=1, 2…Q). Let the k-space of thq  channel be 

1M
q

×∈y  , the SENSE data acquisition model [1] is 

                       ( )q q= Ty F C x ,                             (1) 
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where ( )⋅TF  is an operator that represents a transformation from image domain to k-space domain, 1N×∈x   

is an unknown image to be reconstructed in the full field of view . 

2.2 NUFFT 

  As mentioned above, radial sampling technique has advantages in sampling speed [21-24]. Special pulse 

sequences are used to achieve specific sampling patterns, e.g. radial sampling [25, 26]. Consequently, the fast 

Fourier transform (FFT) is no longer applicable directly on the sampled k-space data. A non-uniform fast 

Fourier transform (NUFFT)[27] is applied in this case since it handles the sampled data located on non-

Cartesian grids. Radial sampling in k-space and NUFFT has also been used in parallel MRI before [21, 23] . 

2.3 CS-MRI 

2.3.1 General CS-MRI 

In the traditional CS-MRI methods, typical two-dimensional (2D) separable wavelet transform was 

commonly used [16, 28]. This typical transform fails to sparsely represent the geometric patterns along the 

singularities [29]. In traditional CS parallel MRI methods, total variation (TV) [30-32] are also widely used. 

However, TV is easy to generate staircase artifacts in reconstruction. Therefore, some new transforms are 

desired to sparsely represent MR images. For example, a dictionary pre-learned from a reference image can 

improve the quality of reconstructed images [33-35]. The PBDW [19] is a sparser representation but with low 

training complexity since only geometric directions need to be learnt from a pre-reconstructed image. However, 

all these new transforms neither are investigated in parallel imaging nor in realistic non-Cartesian sampling. 

Besides, there is still concern that the NUFFT or k-space re-gridding may affect the advantage of these patch-

based images reconstruction[36]. 

2.3.2 PBDW-based CS-MRI 

Compared with the traditional sparse representation, PBDW provides a sparser representation of image 

edges by arranging pixels according to geometric directions [19, 29, 37]. The Fig. 1 shows the flowchart of 

PBDW-based CS-MRI reconstruction. In PBDW, geometric directions are learnt from a reference image, 

which is reconstructed using a typical method, e.g. shift-invariant discrete wavelet transform (SIDWT). 

SIDWT is used as it can mitigate blocky artifacts generated by the general orthogonal wavelets [19]. To further 

improve the result, one can alternate the process of geometric direction training and image reconstruction and 

twice is good enough as recommended in [19]. The process of estimating directions are detailed in [19].  
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Fig. 1 Flowchart of the PBDW-based CS-MRI. 

2.3.3 Redundant-wavelets-based PBDW 

  As the mentioned above, redundant wavelets, which is shift invariant, is always more helpful in suppress 

artifacts for image reconstruction [19] than orthogonal wavelets. However, the PBDW [19] proposed by Qu 

et al. is based on the 1D Haar orthogonal wavelets, and the use of redundant wavelets as an transform can 

preserve more features. Therefore, the redundant-wavelets-based PBDW (PBDRW) is applied in our 

experiments. The direction wavelets PBDRW in this paper are 1D wavelets, of which the basis are shown in 

Fig. 2. It clearly show how the PBDRW capture the directional feature of images thus it provides outstanding 

sparse representation of these features. 

 

Fig. 2 The basis of PBDRW in 4 directions. Each row shows that 8 basis of PBDRW at a given geometric 

direction. 

2.4 Proposed method 

  The goal of CS in parallel MRI with NUFFT is to reconstruct a high quality image from highly 
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undersampled k-space data with radial trajectory, thus significantly accelerates MRI. The flowchart of the CS 

in parallel MRI is summarized in Fig. 3(a). With an object, 8-channel k-space data are partially obtained by 

sensitivity encoding with the radial trajectory, which is performed on each channel with the same sampling 

trajectory as shown in Fig. 3(b). With the undersampled k-space data (R is ranging from 2 to 10), a high-

resolution image can be reconstructed by the CS-SENSE model. To obtain a reduction factor of R, one in 

every R interleaves was sampled. All reconstructions are performed on MATLAB with an Intel Core i7-2600 

CPU at 3.4 GHz and 16 GB memory. 

  In numerical simulation, a single channel brain image (size 256×256), shown in Fig. 3(c), is adopted as the 

object, which is generated from 32 channel full data acquired on a 3T Siemens Trio Tim MRI scanner using 

the T2-weighted turbo spin echo sequence (TR/TE = 6100/99 ms, FOV=220×220 mm2, slice thickness=3 mm) 

[16]. To evaluate the proposed approach, noiseless and simulated eight-channel sensitivity maps of head coils 

are adopted in the simulation as shown in Fig. 4. The simulation of sensitivity encoding with the radial 

trajectory is summarized in the dashed rectangle in Fig. 3(a). The sampling matrix = 256×256, number of 

interleaves = 256. 

 

Fig. 3 The process of the CS in parallel MRI. (a) Flowchart of the CS in parallel MRI; (b) is the radial 

undersampling trajectory with 32 lines; (c) the high-resolution T2-weighted brain image. 
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Fig. 4 Simulated eight-channel sensitivity maps. (a) magnitude; (b) phase. 

 

  For in vivo data, the k-space data are acquired from Philips 3T system (Philips Healthcare, Best, The 

Netherland) using an 8-channel head coil MRI scanner, using T1-weighted fast-field-echo radial sequence 

with TR/TE = 124/4.5 ms, FOV= 230mm2, slice thickness = 4mm, acquisition matrix = 656×328, image 

resolution = 0.70mm2, number of interleaves = 328. 

2.4.1 Reconstruction model 

One possible way to apply PBDRW in parallel MRI is combing SENSE and sparse reconstruction as follows: 

           
2

1 2
1

ˆ arg min
2

Q

q q
q

λ
=

= + −W T
x

x A x y F C x ,             (2) 

where 
1

⋅  stands for 1  norm, which indicates a signal is sparse after a known transform WA , 
2

⋅  stands 
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for 2  norm, which indicates the fidelity of reconstruction, and the parameter λ  weighs between the 

sparsity and data consistency. The notation 

      ( ) ( ) ( )1 1

T
T T T

j j J Jw w w  =w Ψ P R Ψ P R Ψ P RA             (3) 

stands for the PBDRW forward transform, where TΨ  is the forward 1D redundant Daubechies wavelet 

transform, ( )jwP  is an orthogonal operator arranging pixels in each patch parallel to the geometric direction 

jw , jR  is the operation dividing an image x  into patches, and J is the number of patches.  

  In the CS-SENSE model, coil sensitivity estimation qC  is critical for the reconstruction performance [3, 

38]. The sensitivity maps are assumed to be smooth. Therefore, with pre-Cartesian sampling before the non-

uniform sampling in simulation, we use the Cartesian lines at the central of k-space as auto-calibration signal 

(ACS) to estimate the sensitivity map. Then the sensitivities estimated from ACS lines are smoothed by a 

Kaiser window with a window shape parameter of 4 [39]. The ACS lines in our experiments are 16 phase 

encoding lines. With this approach, the estimated sensitivity maps are close to the optimal ones, as shown in 

Fig. 5(b), when the image backgrounds are removed.  

 

Fig. 5 Simulated sensitivity map of the first channel. (a) and (b) are estimated from the full scan data and the 

ACS data, respectively. 

 

2.4.2 Numerical Algorithm 

  To solve Eq. (2), we follow the alternating direction method with continuation [40], by incorporating an 
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auxiliary variable ( )T
j j jw=α Ψ P R x  into Eq. (2) according to 

  
2 2

1 22,
1 1

min ( ( ) )
2 2j

QJ
T

j j j j q q
j q

w
β λ

= =

+ − + −  T
x α

α α Ψ P R x y F C x .            (4) 

  When β →∞ [40], the solution of Eq. (4) approaches that of Eq. (2). In implementation, β  will be 

increased by a factor of 2. A solution for a smaller β  will be used as a warm start for solving optimization 

problem with a larger β  [41]. When β  is fixed, we solve Eq. (4) as follows: 

(1) Fixing x , solve jα  via soft threshold: 

    
( )1

max( ( ) ,0)
( )

T
j jT

j j j T
j j

w
w

wβ
= −

Ψ P R x
α Ψ P R x

Ψ P R x
；                 (5) 

(2) Fixing all the ( )1, ,j j J=α  , solve x  according to 

   
2 2

22
1 1

min ( ( ) )
2 2

QJ
T

j j j q q
j q

w
β λ

= =

− + −  T
x

α Ψ P R x y F C x ；         (6) 

One has 

1 1 1 1

( ) ( ) ( )
Q QJ J

T T T H H T T H H
j j j j q T T q j j j q T q

j q j q

w w wβ λ β λ
= = = =

+ = +   R P ΨΨ P R x C F F C x R P Ψα C F y , (7) 

where 
1

J
T
j j

j

e
=

=I R R ; I is a unit matrix; the superscript ‘H’ means Hermitian transpose of a matrix; and e  

is overlapping factor of image patches, which is defined as 
2

G
e

l
=  [19], where G  the side length of a square 

patch and l  is the sliding distance. In this paper, e is 4 since 8G =  and 4l = [19]. 

  Since T κ=ΨΨ I (κ is the redundancy degree, which is 4 for all experiments in this paper), ( )T
jw =P P I , 

the solution of Eq. (7) is 

      
1 1

( )
Q Q

H H H H
q q q q

q q

e αβ κ λ β λ
= =

+ = + T T TI C F F C x S C F y                (8) 

where 
1

( )
J

T T
j j j

j

wα
=

=S R P Ψα . Finally, Eq. (8) is solved according to 

       =Ax b                                 (9) 

using the preconditioned conjugate gradient method.  

 

Table 1 Algorithm for PBDRW-based CS SENSE reconstruction. 
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Initialization: 

Input the acquired multichannel k-space data qy , the estimated sensitivity map qC  , the geometric 

directions { 1, ,J}j j =P  of jth patch and overlap factor e , the undersampled non-uniform fast Fourier 

operator TF , the redundant Daubechies wavelet transform Ψ  and redundancy κ , the regularization 

parameter λ  and tolerance of inner loop 45 10ε −= × . 

Initialize H
T q

q

=x F y , last =x x , 82β =  and 0jα =  for all 1, , Jj =   

Main: 

 While 162β ≤  

  (1) For 1, , Jj =  : Given x , solve Eq. (5) and obtain the solution ( )1, ,j j J=α  . 

  (2) Given ( )1, ,j j J=α  , solve Eq. (8) and obtain the solution x ; 

  (3) If last εΔ = − >x x x , then last ←x x , go to step (1);  

Otherwise, go to step (4); 

  (4) ˆ ←x x , 2β β← , go to step (1); 

 End while 

Output x̂  

 

3. Results 

  In this section, we compare different reconstruction methods on simulated and in vivo data. TV and SIDWT 

are selected to be compared since TV is typically used in PPI [30, 42] and SIDWT a typical sparsifying 

transform in CS-MRI[16]. wA  is replaced with SIDWT or TV operator in Eq. (2). As it is mentioned before, 

the image reconstructed using SIDWT will provide the initial geometric directions for PBDRW. 

  The reconstruction error, relative 2  norm error (RLNE), defined as 

 ( ) 2

2

ˆ
ˆRLNE

−
=

x x
x

x




,                         (10) 

is used to measure the difference between the reconstructed image x̂  and groundtruth (fully sampled and 
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noiseless) image x  [19, 36]. 

The signal-to-noise ratio (SNR) is measured on the image according to 

dB 10SNR 10log
u

σ
 =  
 

,                        (11) 

where u  is the mean of image intensity and σ  is the standard deviation of noise in the image background. 

Structural similarity (SSIM) [3] measures the similarity of two local images in a window. The SSIM value 

of two windows are attribute to the central pixel in that window. Hence, the SSIM is a function of  ix  and  ix , 

which are the center of local images a and b with a window size of G G× (G is 8 in this paper).  

The SSIM is defined as 

   ( )( )
( )( )

1 2

2 2 2 2
1 2

2 2
SSIM( , ) SSIM( , ) a b ab

i i

a b a b

u u E E
x x

u u E E

σ
σ σ

+ +
= =

+ + + +
a b   (12) 

where au  is the average of a, bu  is the average of b, aσ  is the standard deviation of a, bσ  is the standard 

deviation of b, abσ  is the covariance of a and b,  E1 and E2 are two variables to stabilize the division with 

weak denominator.  

According to the definition in Eq. (2), the SSIM is a function of central pixels  ix  and  ix . For a whole 

image, we use the mean SSIM (MSSIM) to evaluate the preserved structures in reconstruction. The MSSIM 

is defined as: 

   1
MSSIM( , ) SSIM( , )i i

i

x x
T

= x x ,                     (13) 

where x  and x  are the groundtruth image and the reconstructed image, respectively,  ix  and  ix are the 

corresponding center of local images at the ith local window, and T is the number of total local windows that 

is equal to the number of image pixels. 

3.1 Numerical Simulation 

  In simulated reconstruction, the partially sampled k-space data (R=8) on radial trajectory are obtained using 

NUFFT on simulated channel images, and then Gaussian white noises are added to the k-space data in the real 

and imaginary parts, respectively. The noise standard deviation is 0.01 in simulation. The global evaluation 

criteria for reconstructed images are listed in Tables 2 and reconstructed images are shown in Fig. 6.  
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Fig. 6 Reconstructed images and SSIMs from radial undersampling data with low added artificial noise. (a) is 

the groundtruth image; (b) the full sampled image for noise-added data; (c)-(e) are reconstructed 

images using TV, SIDWT, PBDRW while (f)-(h) are the SSIMs corresponding to (c)-(e), respectively. 

 

Table 2 Evaluation criteria with low noise-added undersampling data. 

Methods Images 

Evaluation criteria 

Regularization parameter  

RLNE MSSIM SNR(dB)

TV Fig. 6(c) 0.1913 0.9932 16.65 2×103 

SIDWT Fig. 6(d) 0.1759 0.9934 16.98 1×103 

PBDRW Fig. 6(e) 0.1128 0.9974 18.95 5×104 

Note: 32 radial lines (R=8) are used for reconstruction. 

 

  The proposed method achieves lower reconstruction error than other methods. The Table 2 shows that the 

PBDRW achieves the lowest RLNE, highest MSSIM and SNR among all three methods. This is consistent to 

the observation that PBDRW preserve more image details and structures as shown in Figs. 6. The enlarged 

area of Figs. 6(c)-(e) imply that the PBDRW achieves better resolution than TV and SIDWT. Besides, the Figs. 

6(f)-(h) obviously show that the higher SSIMs are achieved in most regions using PBDRW than other two 

methods.  

3.2 In vivo data reconstruction 
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  In this section, RLNEs and MSSIMs are not used since ground truth (fully sampled and noiseless) data are 

not available. We also verify the performance of three methods in two slices, and the reconstructed images for 

R=6 are shown in Fig.7. The results show that the proposed method leads to sharper edges in reconstructed 

images. Therefore, the proposed method obtains higher fidelity to the fully sampled image than other methods.  

 

Fig. 7 Reconstructed images for two slices of in vivo data. Left to right: The SOS of fully sampled channel 

images; reconstructed images using TV, SIDWT, PBDRW. 

4. Discussions 

4.1 Different reduction factor R 

  In simulation, different reduction factors are adopted to the k-space data present in Section 3.1. The 

performance of reconstruction using three methods are evaluated in Figs. 8. When reduction factor is from 2 

to 10, the consistent reduction of reconstruction error using PBDRW is always lowest among three methods. 

Besides, these MSSIMs indicate the reconstructed image using PBDRW is most similar structure to the 

groundtruth image. However, the SNR index using PBDRW is not consistent with RLNE under different 

reduction factors (Fig. 8(c)). This is because that an optimal parameter λ, achieving the lowest RLNE, may 

not lead to a highest SNR. Figs. 9(d1)-(d3) show that reconstructed images preserve sharper edges when more 

data are sampled although the SNR is decreased. These observations show that the proposed method always 

hold better reconstruction at different reduction factors. 
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Fig. 9 Reconstructed images under different reduction factors using TV (b1-b3), SIDWT (c1-c3) and PBDRW 

(d1-d3), respectively. 
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Fig. 8 Evaluation criteria for reconstructed image under different reduction factors. (a)-(c) are RLNEs, 

MSSIMs and SNRs respectively. 

4.2 Reconstruction with PBDRW versus PBDW 

  To investigate the use of the redundant-wavelets-based PBDRW for image reconstruction, we choose the 

orthogonal-wavelets-based PBDW to be compared. In simulation, the Gaussian white noise, with standard 

deviation 0.01, is added to the radial undersampling data (R=10). The evaluation criteria are listed in Table 3 

and reconstructed images are shown in Fig. 10. In comparison, the evaluation criteria using PBDRW and 

PBDW are comparable, but the SSIMs using PBDRW in the region (as red marked in Figs. 10) is higher than 

using PBDW. Besides, the PBDRW achieves more smooth edges than PBDW, as zoomed in Figs. 10(d) and 

(e). Thus, the PBDRW performs smoother image than the PBDW. 

 

Fig. 10 Reconstructed images and SSIMs using SIDWT, PBDW and PBDRW. (a) is the groundtruth image; 

(b) the full sampled image for noise-added data; (c)-(e) are reconstructed images using SIDWT, PBDW 

and PBDRW while the direction estimated from (c); (f)-(h) are the SSIMs corresponding to (c)-(e), 

respectively. 

 

Table 3 Evaluation criteria using the methods of SIDWT, PBDW and PBDRW. 

Methods Images 

Evaluation criteria Regularization 

parameter RLNE MSSIM SNR(dB)

SIDWT Fig. 10(c) 0.2323 0.9901 16.99 1×103 

PBDW Fig. 10(d) 0.1872 0.9942 19.51 5×104 
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PBDRW Fig. 10(e) 0.1707 0.9950 20.04 5×104 

Note: 26 radial lines (R=10) are used for reconstruction. 

 

4.3 Reconstruction with larger added noise in k-space 

  In Section 3, the proposed method outperforms other methods with the low noise. Nevertheless, it is 

unknown whether the advantage of the proposed method will be lost for a larger noise. In this section, the 

added Gaussian white noise standard deviation is raised to 0.02 in simulation. The evaluation criteria are listed 

in Table 4 and reconstructed images are shown in Fig. 11. For a greater noise level, the proposed method 

preserves more image edges than other methods although the advantage of denoising using PBDRW is lost. 

The PBDRW can still achieve lowest RLNE and highest MSSIM, but the SNR using PBDRW will be 

comparable to using the other method. Furthermore, the computational time of the proposed method is longer 

than using SIDWT and comparable to using TV. The Figs. 11(e) and (h) firmly show that PBDRW still 

produces obviously sharper edges and lose minimal image structures than the other methods. 

 

Fig. 11 Reconstructed images and SSIMs with larger added noise. (a) is the groundtruth image; (b) the full 

sampled SOS image for noise-added data while (f) is one of  eight-channel images; (c)-(e) are 

reconstructed images using TV, SIDWT, PBDRW while (g)-(h) are the SSIMs corresponding to (c)-

(e), respectively. 

Table 4 Evaluation criteria with lager noise-added undersampling data. 

Methods Images 

Evaluation criteria Regularization 

parameter 

Computational 

time (s) RLNE MSSIM SNR(dB)
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TV Fig. 11(c) 0.1334 0.9961 11.71 1×103 404 

SIDWT Fig. 11(d) 0.1217 0.9963 11.44 5×102 112 

PBDRW Fig. 11(e) 0.0979 0.9976 11.65 3×104 349 

Note: 64 radial lines (R=4) are used for reconstruction. 

4.4 Reconstruction with CS-MRI followed by SOS 

  The regularization of CS-SENSE occurs only in the target image based on the original image is sparse or 

compressible in image domain or wavelet domain. However, the target image can also be reconstructed by a 

simple model without sensitivity estimation if the multi-channel images are still sparse in same transform. The 

target image is obtained by the SOS of all channel images, and the “SOS” means Sum of Square (SOS), 

defined as  ( )2

1

1 Q

i
qQ =

= x x , where ix  is the single-channel image and the total number of channels is Q  

[19] (CS-MRI-SOS).  

  In simulated reconstruction, the radial sampling k-space data without added noise are used. In comparison, 

the proposed method achieves lower reconstruction error and higher MSSIM in Table 5 than the CS-MRI-

SOS, and the PBDRW achieves lowest reconstruction error among three transforms in the CS-MRI-SOS. With 

limited data, the CS-MRI-SOS images are more blurry than the CS-SENSE one although the PBDRW achieves 

sharpest image edges in the CS-MRI-SOS, as shown in Fig 12. The Figs. 12(f)-(i) obviously show that the 

proposed method preserves more image structures than other methods. 

 

Fig. 12 Reconstructed images and SSIMs with different methods. (a) is the groundtruth image; (b)-(d) are 

reconstructed images using TV, SIDWT, PBDRW from CS-MRI-SOS, while (e) is reconstructed from 

the proposed method with directions estimated from (c); (f)-(i) are SSIMs, corresponding. 
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Table 5 Evaluation criteria with noiseless undersampling data. 

Methods Images 

Evaluation criteria

Regularization parameter  

RLNE MSSIM

TV in CS-MRI-SOS Fig. 12(b) 0.2143 0.9917 1×105 

SIDWT in CS-MRI-SOS Fig. 12(c) 0.1761 0.9934 1×106 

PBDRW in CS-MRI-SOS Fig. 12(d) 0.1489 0.9960 1×106 

PBDRW in CS-SENSE Fig. 12(e) 0.0855 0.9986 1×106 

Note: 32 radial lines (R=8) are used for reconstruction. 

 

4.5 Reconstruction with CS-MRI using DL, PANO and PBDRW 

  In this section, we compare the proposed PBDRW to dictionary learning (DL) [44] and the patch-based 

nonlocal operator (PANO) [36] for CS-MRI reconstruction. Since both the DL and PANO are originally 

applied into single channel MRI reconstruction, and revise these methods to fit for parallel imaging is hard, 

we only compare the results on single channel imaging. Extension of DL and PANO in to parallel imaging 

will be of great interest and we plan to do it in the future. In simulation, the Cartesian sampling pattern (Fig. 

13(e)) is adopted in undersampling. As shown in Table 6, the RLNE and MSSIM indexes of PBDRW and 

PANO are comparable and both of them are better than that of DL-based CS-MRI. Figs. 13(a)-(d) indicate 

that the edges of reconstruction images using PBDRW and PANO are better preserved than that using DL, 

which is consistent to the observation in Figs. 13(f)-(g).  
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Fig. 13 The reconstructed images and SSIMs with CS-MRI. (a) the ground truth image; (b)-(d) are 

reconstructed images using dictionary learning (DL), PANO, and PBDRW, while (f)-(h) are 

corresponding SSIMs; (e) is the sampling pattern. 

 

 

 

 

Table 6 Evaluation criteria with Cartesian undersampling data in CS-MRI. 

Methods Images 

Evaluation criteria

Parameters Computational time (s)  

RLNE MSSIM

DL Fig. 13(b) 0.1236 0.9939 

K2 = 32*n;  

num = 25; n = 64.

2.40×104 

PANO Fig. 13(c) 0.0956 0.9954 λ = 1×106 1.30×102 

PBDRW Fig. 13(d) 0.1069 0.9956 λ = 1×106 2.72×103 

Note: 32% of fully sampled k-space data in Fig. 13(a) is used for reconstruction. 

 

4.6 Convergence of the algorithm 

The proof of the convergence of the algorithm proposed in this paper is similar to the one given in [45]. The 

empirical convergence result of the algorithm is shown in Fig. 14. It shows that the objective function 
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decreases gradually and finally stabilizes. For the Preconditioning Conjugate Gradient (PCG) step, the 

algorithm achieves fully converged before 10 iterations, which means the norm of solution difference in two 

consecutive iterations is lower than 10-6. PCG is considered to converge under this level of difference. Since 

the computation step is not time consuming, we suggest users to make sure PCG converge. 

 

Fig. 14 Empirical convergence of the objective function. Note: The k-space data of in Section 3.1 is used for 

this experiment. 

 

4.7 Regularization parameters 

  How to choose the regularization parameters λ is discussed in this section. The regularization parameter λ 

is chosen to achieve the lowest reconstruction errors. Ideally, λ can be as large as possible if the data are free 

of noise. But with the noisy data, regularization parameter λ is crucial to minimize reconstruction errors since 

a smaller λ penalizes the noise more heavily and a larger λ preserves more image structures. The influence of 

λ on the reconstruction error is studied in Fig. 15. A smaller λ leads to a higher RLNE and SNR, while a larger 

λ leads to a higher RLNE and lower SNR. The reconstructed images using different λ are shown in Fig. 16. It 

shows that a too small λ leads to an over-smoothed image while a too large λ will introduce obvious noise. In 

experiments, the optimal λ lies in the range from 2 × 10ସ to 8 × 10ସ.  
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Fig. 15 Effects of regularization parameter λ for image reconstruction from noisy data. 

 

 

Fig. 16 Reconstructed images under different regularization parameter λ. (a) the ground-truth image; (b)-(d) 

are reconstructed images using λ=104, 5×104 and λ=106, respectively. 

 

5. Conclusion 

   In this paper, the patch-based directional redundant wavelets (PBDRW) is introduced into parallel MRI 

reconstruction for radial sampling in a compressed sensing SENSE model. Results on simulated and in vivo 

data show that the proposed method better preserves image edges than traditional CS-MRI methods based 

on total variation and shift-invariant discrete wavelets. The advantage of PBDRW in providing a sparser 

representation of image patch with edges still holds when non-uniform fast Fourier transform is applied. 

With a relatively low noise level, the proposed method achieves a higher SNR and MSSIM than other 

methods. However, when the noise standard deviation is increased to 0.02, the SNR advantage is not obvious 

although edge is still better preserved by PBDRW. Therefore, how to preserve the image edges in 

reconstructions under high noises is still open. 
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