
  

  

Abstract—A balance sparsity model in compressed sensing 
MRI is proposed. The new model outperforms the traditional 
analysis or synthesis sparsity models both in vision and 
numerical errors when a balance parameter is set properly. 

I. INTRODUCTION 

In sparse representation using tight frames, synthesis 
sparsity and analysis sparsity are two typical models [1], 
which have been used in compressed sensing MRI (CS-MRI) 
[3] [4] to accelerate the imaging. The balance sparsity model 
(BSM) balance these two models [2]. However, to our best 
knowledge, BSM has never been investigated in CS-MRI and 
its performance is still unknown. In this work, we compare 
these models numerically and find that balance model 
outperforms other two models [3][4] both in vision and 
numerical errors when one key parameter is tuned properly.  

II. METHODS 

A balance sparsity model for CS-MRI is 
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Where x̂  is the underlying image, ψ  is a tight frame,  α  is 

the coefficient, UF  is k space undersampling operator, b is 

sampled data, λ  is a regularization parameter and  β   is the 
balance parameter. The balance model becomes the synthesis 
model when =0β    and analysis model when =β ∞   . Setting 
0 β< < ∞    leads to the so called balance model [1] since it 
balances between analysis and synthesis models.  

In this work, a proximal forward-backward splitting 
(PFBS) algorithm [5] speeded up by the fast iterative 
shrinkage thresholding (FISTA) [6] is explored to solve the 
balance model in CS-MRI. For comparison, the synthesis 
model is solved by setting β=0 and the analysis model is 
solved by alternating direction method of multipliers. 
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III. RESULTS 

The brain image (size 256×256) in Fig. 1(a) is acquired 
from a healthy volunteer at a 3T Siemens Trio Tim MRI 
scanner using the T2-weighted turbo spin echo sequence 
(TR/TE = 6100/99 ms, FOV=220 220 mm2, slice 
thickness=3 mm). The relative 2   norm error (RLNE) [4] is 
adopted to measure the reconstruction error. Undecimated 
discrete wavelet transform from Rice Wavelet Toolbox is used 
as the tight frame.  

Reconstructed images shown in Figs. 1 (b) and (d) indicate 
that the analysis model produces smoother image than the 
synthesis model which generates sharp artifacts. With the 
proposed balance model, image structures (Fig. 1 (c)) are 
preserved best (Fig. 1(g)) and the RLNE is the smallest. In our 
simulation, an optimal balance parameter is set as =1.37. 

 
Figure 1.  Reconstructed images. (a) the original image, (b)-(d) are 
reconstructed images of analysis, balance and synthesis models, (e) the zoom 
out part of  (a)-(d),  (f)-(g) are corresponding error images of (b)-(d). The 
RLNEs of (b)-(d) are 0.1143, 0.0947, 0.1221 while running time for 
reconstructing them are 12s, 49s, 51s. Note that 40% k-space data are 
sampled. 
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